ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5req GIF version

Theorem syl5req 2126
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5req.1 𝐴 = 𝐵
syl5req.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
syl5req (𝜑𝐶 = 𝐴)

Proof of Theorem syl5req
StepHypRef Expression
1 syl5req.1 . . 3 𝐴 = 𝐵
2 syl5req.2 . . 3 (𝜑𝐵 = 𝐶)
31, 2syl5eq 2125 . 2 (𝜑𝐴 = 𝐶)
43eqcomd 2086 1 (𝜑𝐶 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074
This theorem is referenced by:  syl5reqr  2128  opeqsn  4007  relop  4504  funopg  4954  funcnvres  4992  apreap  7687  recextlem1  7741  nn0supp  8340  intqfrac2  9321
  Copyright terms: Public domain W3C validator