| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5reqr | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| syl5reqr.1 | ⊢ 𝐵 = 𝐴 |
| syl5reqr.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| syl5reqr | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5reqr.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2085 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | syl5reqr.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | syl5req 2126 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: bm2.5ii 4240 resdmdfsn 4671 f1o00 5181 fmpt 5340 fmptsn 5373 resfunexg 5403 pm54.43 6459 prarloclem5 6690 recexprlem1ssl 6823 recexprlem1ssu 6824 iooval2 8938 resqrexlemover 9896 |
| Copyright terms: Public domain | W3C validator |