ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5reqr GIF version

Theorem syl5reqr 2128
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5reqr.1 𝐵 = 𝐴
syl5reqr.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
syl5reqr (𝜑𝐶 = 𝐴)

Proof of Theorem syl5reqr
StepHypRef Expression
1 syl5reqr.1 . . 3 𝐵 = 𝐴
21eqcomi 2085 . 2 𝐴 = 𝐵
3 syl5reqr.2 . 2 (𝜑𝐵 = 𝐶)
42, 3syl5req 2126 1 (𝜑𝐶 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074
This theorem is referenced by:  bm2.5ii  4240  resdmdfsn  4671  f1o00  5181  fmpt  5340  fmptsn  5373  resfunexg  5403  pm54.43  6459  prarloclem5  6690  recexprlem1ssl  6823  recexprlem1ssu  6824  iooval2  8938  resqrexlemover  9896
  Copyright terms: Public domain W3C validator