ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trel3 GIF version

Theorem trel3 3883
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
trel3 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))

Proof of Theorem trel3
StepHypRef Expression
1 3anass 923 . . 3 ((𝐵𝐶𝐶𝐷𝐷𝐴) ↔ (𝐵𝐶 ∧ (𝐶𝐷𝐷𝐴)))
2 trel 3882 . . . 4 (Tr 𝐴 → ((𝐶𝐷𝐷𝐴) → 𝐶𝐴))
32anim2d 330 . . 3 (Tr 𝐴 → ((𝐵𝐶 ∧ (𝐶𝐷𝐷𝐴)) → (𝐵𝐶𝐶𝐴)))
41, 3syl5bi 150 . 2 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → (𝐵𝐶𝐶𝐴)))
5 trel 3882 . 2 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
64, 5syld 44 1 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919  wcel 1433  Tr wtr 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-tr 3876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator