ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 GIF version

Theorem unss2 3143
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3141 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 3116 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 3116 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3040 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  cun 2971  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by:  unss12  3144  difdif2ss  3221  difdifdirss  3327  ord3ex  3961  rdgss  5993  xpiderm  6200
  Copyright terms: Public domain W3C validator