ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiderm GIF version

Theorem xpiderm 6200
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by Jim Kingdon, 22-Aug-2019.)
Assertion
Ref Expression
xpiderm (∃𝑥 𝑥𝐴 → (𝐴 × 𝐴) Er 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem xpiderm
StepHypRef Expression
1 relxp 4465 . . 3 Rel (𝐴 × 𝐴)
21a1i 9 . 2 (∃𝑥 𝑥𝐴 → Rel (𝐴 × 𝐴))
3 dmxpm 4573 . 2 (∃𝑥 𝑥𝐴 → dom (𝐴 × 𝐴) = 𝐴)
4 cnvxp 4762 . . . 4 (𝐴 × 𝐴) = (𝐴 × 𝐴)
5 xpidtr 4735 . . . 4 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
6 uneq1 3119 . . . . 5 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
7 unss2 3143 . . . . 5 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
8 unidm 3115 . . . . . 6 ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
9 eqtr 2098 . . . . . . 7 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
10 sseq2 3021 . . . . . . . 8 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ↔ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
1110biimpd 142 . . . . . . 7 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
129, 11syl 14 . . . . . 6 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
138, 12mpan2 415 . . . . 5 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
146, 7, 13syl2im 38 . . . 4 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
154, 5, 14mp2 16 . . 3 ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)
1615a1i 9 . 2 (∃𝑥 𝑥𝐴 → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))
17 df-er 6129 . 2 ((𝐴 × 𝐴) Er 𝐴 ↔ (Rel (𝐴 × 𝐴) ∧ dom (𝐴 × 𝐴) = 𝐴 ∧ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
182, 3, 16, 17syl3anbrc 1122 1 (∃𝑥 𝑥𝐴 → (𝐴 × 𝐴) Er 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  cun 2971  wss 2973   × cxp 4361  ccnv 4362  dom cdm 4363  ccom 4367  Rel wrel 4368   Er wer 6126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-er 6129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator