ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif2ss GIF version

Theorem difdif2ss 3221
Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
difdif2ss ((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵𝐶))

Proof of Theorem difdif2ss
StepHypRef Expression
1 inssdif 3200 . . . 4 (𝐴𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶))
2 unss2 3143 . . . 4 ((𝐴𝐶) ⊆ (𝐴 ∖ (V ∖ 𝐶)) → ((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))))
31, 2ax-mp 7 . . 3 ((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶)))
4 difindiss 3218 . . 3 ((𝐴𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶)))
53, 4sstri 3008 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶)))
6 invdif 3206 . . . 4 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
76eqcomi 2085 . . 3 (𝐵𝐶) = (𝐵 ∩ (V ∖ 𝐶))
87difeq2i 3087 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶)))
95, 8sseqtr4i 3032 1 ((𝐴𝐵) ∪ (𝐴𝐶)) ⊆ (𝐴 ∖ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  Vcvv 2601  cdif 2970  cun 2971  cin 2972  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator