ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2gf GIF version

Theorem vtocl2gf 2660
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
Hypotheses
Ref Expression
vtocl2gf.1 𝑥𝐴
vtocl2gf.2 𝑦𝐴
vtocl2gf.3 𝑦𝐵
vtocl2gf.4 𝑥𝜓
vtocl2gf.5 𝑦𝜒
vtocl2gf.6 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2gf.7 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2gf.8 𝜑
Assertion
Ref Expression
vtocl2gf ((𝐴𝑉𝐵𝑊) → 𝜒)

Proof of Theorem vtocl2gf
StepHypRef Expression
1 elex 2610 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtocl2gf.3 . . 3 𝑦𝐵
3 vtocl2gf.2 . . . . 5 𝑦𝐴
43nfel1 2229 . . . 4 𝑦 𝐴 ∈ V
5 vtocl2gf.5 . . . 4 𝑦𝜒
64, 5nfim 1504 . . 3 𝑦(𝐴 ∈ V → 𝜒)
7 vtocl2gf.7 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
87imbi2d 228 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒)))
9 vtocl2gf.1 . . . 4 𝑥𝐴
10 vtocl2gf.4 . . . 4 𝑥𝜓
11 vtocl2gf.6 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
12 vtocl2gf.8 . . . 4 𝜑
139, 10, 11, 12vtoclgf 2657 . . 3 (𝐴 ∈ V → 𝜓)
142, 6, 8, 13vtoclgf 2657 . 2 (𝐵𝑊 → (𝐴 ∈ V → 𝜒))
151, 14mpan9 275 1 ((𝐴𝑉𝐵𝑊) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wnf 1389  wcel 1433  wnfc 2206  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by:  vtocl3gf  2661  vtocl2g  2662  vtocl2gaf  2665
  Copyright terms: Public domain W3C validator