| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocldf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| vtocld.3 | ⊢ (𝜑 → 𝜓) |
| vtocldf.4 | ⊢ Ⅎ𝑥𝜑 |
| vtocldf.5 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| vtocldf.6 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| vtocldf | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocldf.5 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 2 | vtocldf.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | vtocldf.4 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | vtocld.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ex 113 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 6 | 3, 5 | alrimi 1455 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 7 | vtocld.3 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 8 | 3, 7 | alrimi 1455 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 9 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | vtoclgft 2649 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜒) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ∧ ∀𝑥𝜓) ∧ 𝐴 ∈ 𝑉) → 𝜒) | |
| 11 | 1, 2, 6, 8, 9, 10 | syl221anc 1180 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 = wceq 1284 Ⅎwnf 1389 ∈ wcel 1433 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 |
| This theorem is referenced by: vtocld 2651 peano2 4336 iota2df 4911 |
| Copyright terms: Public domain | W3C validator |