| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota2df | GIF version | ||
| Description: A condition that allows us to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
| iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| iota2df.4 | ⊢ Ⅎ𝑥𝜑 |
| iota2df.5 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| iota2df.6 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| iota2df | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | iota2df.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 3 | simpr 108 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 4 | 3 | eqeq2d 2092 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((℩𝑥𝜓) = 𝑥 ↔ (℩𝑥𝜓) = 𝐵)) |
| 5 | 2, 4 | bibi12d 233 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((𝜓 ↔ (℩𝑥𝜓) = 𝑥) ↔ (𝜒 ↔ (℩𝑥𝜓) = 𝐵))) |
| 6 | iota2df.2 | . . 3 ⊢ (𝜑 → ∃!𝑥𝜓) | |
| 7 | iota1 4901 | . . 3 ⊢ (∃!𝑥𝜓 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) |
| 9 | iota2df.4 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 10 | iota2df.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 11 | iota2df.5 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 12 | nfiota1 4889 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥𝜓) | |
| 13 | 12 | a1i 9 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓)) |
| 14 | 13, 10 | nfeqd 2233 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓) = 𝐵) |
| 15 | 11, 14 | nfbid 1520 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| 16 | 1, 5, 8, 9, 10, 15 | vtocldf 2650 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 Ⅎwnf 1389 ∈ wcel 1433 ∃!weu 1941 Ⅎwnfc 2206 ℩cio 4885 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 |
| This theorem is referenced by: iota2d 4912 iota2 4913 riota2df 5508 |
| Copyright terms: Public domain | W3C validator |