![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfnuleu | GIF version |
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2066 to strengthen the hypothesis in the form of axnul 3903). (Contributed by NM, 22-Dec-2007.) |
Ref | Expression |
---|---|
zfnuleu.1 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Ref | Expression |
---|---|
zfnuleu | ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfnuleu.1 | . . . 4 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
2 | nbfal 1295 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
3 | 2 | albii 1399 | . . . . 5 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
4 | 3 | exbii 1536 | . . . 4 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
5 | 1, 4 | mpbi 143 | . . 3 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
6 | nfv 1461 | . . . 4 ⊢ Ⅎ𝑥⊥ | |
7 | 6 | bm1.1 2066 | . . 3 ⊢ (∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) → ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
8 | 5, 7 | ax-mp 7 | . 2 ⊢ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
9 | 3 | eubii 1950 | . 2 ⊢ (∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃!𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
10 | 8, 9 | mpbir 144 | 1 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ∀wal 1282 ⊥wfal 1289 ∃wex 1421 ∃!weu 1941 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |