ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfnuleu GIF version

Theorem zfnuleu 3902
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2066 to strengthen the hypothesis in the form of axnul 3903). (Contributed by NM, 22-Dec-2007.)
Hypothesis
Ref Expression
zfnuleu.1 𝑥𝑦 ¬ 𝑦𝑥
Assertion
Ref Expression
zfnuleu ∃!𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem zfnuleu
StepHypRef Expression
1 zfnuleu.1 . . . 4 𝑥𝑦 ¬ 𝑦𝑥
2 nbfal 1295 . . . . . 6 𝑦𝑥 ↔ (𝑦𝑥 ↔ ⊥))
32albii 1399 . . . . 5 (∀𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 ↔ ⊥))
43exbii 1536 . . . 4 (∃𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃𝑥𝑦(𝑦𝑥 ↔ ⊥))
51, 4mpbi 143 . . 3 𝑥𝑦(𝑦𝑥 ↔ ⊥)
6 nfv 1461 . . . 4 𝑥
76bm1.1 2066 . . 3 (∃𝑥𝑦(𝑦𝑥 ↔ ⊥) → ∃!𝑥𝑦(𝑦𝑥 ↔ ⊥))
85, 7ax-mp 7 . 2 ∃!𝑥𝑦(𝑦𝑥 ↔ ⊥)
93eubii 1950 . 2 (∃!𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃!𝑥𝑦(𝑦𝑥 ↔ ⊥))
108, 9mpbir 144 1 ∃!𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wal 1282  wfal 1289  wex 1421  ∃!weu 1941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator