ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpow GIF version

Theorem zfpow 3949
Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfpow 𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfpow
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-pow 3948 . 2 𝑥𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥)
2 elequ1 1640 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑦𝑥𝑦))
3 elequ1 1640 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
42, 3imbi12d 232 . . . . . 6 (𝑤 = 𝑥 → ((𝑤𝑦𝑤𝑧) ↔ (𝑥𝑦𝑥𝑧)))
54cbvalv 1835 . . . . 5 (∀𝑤(𝑤𝑦𝑤𝑧) ↔ ∀𝑥(𝑥𝑦𝑥𝑧))
65imbi1i 236 . . . 4 ((∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
76albii 1399 . . 3 (∀𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ ∀𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
87exbii 1536 . 2 (∃𝑥𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
91, 8mpbi 143 1 𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-13 1444  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  el  3952
  Copyright terms: Public domain W3C validator