ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow2 GIF version

Theorem axpow2 3950
Description: A variant of the Axiom of Power Sets ax-pow 3948 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow2 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-pow 3948 . 2 𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
2 dfss2 2988 . . . . 5 (𝑧𝑥 ↔ ∀𝑤(𝑤𝑧𝑤𝑥))
32imbi1i 236 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
43albii 1399 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
54exbii 1536 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
61, 5mpbir 144 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282  wex 1421  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by:  axpow3  3951  pwex  3953
  Copyright terms: Public domain W3C validator