MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0inp0 Structured version   Visualization version   Unicode version

Theorem 0inp0 4837
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
0inp0  |-  ( A  =  (/)  ->  -.  A  =  { (/) } )

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 4836 . . 3  |-  (/)  =/=  { (/)
}
2 neeq1 2856 . . 3  |-  ( A  =  (/)  ->  ( A  =/=  { (/) }  <->  (/)  =/=  { (/)
} ) )
31, 2mpbiri 248 . 2  |-  ( A  =  (/)  ->  A  =/= 
{ (/) } )
43neneqd 2799 1  |-  ( A  =  (/)  ->  -.  A  =  { (/) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    =/= wne 2794   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-nul 3916  df-sn 4178
This theorem is referenced by:  dtruALT  4899  zfpair  4904  dtruALT2  4911
  Copyright terms: Public domain W3C validator