MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtruALT2 Structured version   Visualization version   Unicode version

Theorem dtruALT2 4911
Description: Alternate proof of dtru 4857 using ax-pr 4906 instead of ax-pow 4843. (Contributed by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dtruALT2  |-  -.  A. x  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtruALT2
StepHypRef Expression
1 0inp0 4837 . . . 4  |-  ( y  =  (/)  ->  -.  y  =  { (/) } )
2 snex 4908 . . . . 5  |-  { (/) }  e.  _V
3 eqeq2 2633 . . . . . 6  |-  ( x  =  { (/) }  ->  ( y  =  x  <->  y  =  { (/) } ) )
43notbid 308 . . . . 5  |-  ( x  =  { (/) }  ->  ( -.  y  =  x  <->  -.  y  =  { (/)
} ) )
52, 4spcev 3300 . . . 4  |-  ( -.  y  =  { (/) }  ->  E. x  -.  y  =  x )
61, 5syl 17 . . 3  |-  ( y  =  (/)  ->  E. x  -.  y  =  x
)
7 0ex 4790 . . . 4  |-  (/)  e.  _V
8 eqeq2 2633 . . . . 5  |-  ( x  =  (/)  ->  ( y  =  x  <->  y  =  (/) ) )
98notbid 308 . . . 4  |-  ( x  =  (/)  ->  ( -.  y  =  x  <->  -.  y  =  (/) ) )
107, 9spcev 3300 . . 3  |-  ( -.  y  =  (/)  ->  E. x  -.  y  =  x
)
116, 10pm2.61i 176 . 2  |-  E. x  -.  y  =  x
12 exnal 1754 . . 3  |-  ( E. x  -.  y  =  x  <->  -.  A. x  y  =  x )
13 eqcom 2629 . . . 4  |-  ( y  =  x  <->  x  =  y )
1413albii 1747 . . 3  |-  ( A. x  y  =  x  <->  A. x  x  =  y )
1512, 14xchbinx 324 . 2  |-  ( E. x  -.  y  =  x  <->  -.  A. x  x  =  y )
1611, 15mpbi 220 1  |-  -.  A. x  x  =  y
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1481    = wceq 1483   E.wex 1704   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator