![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.3 | Structured version Visualization version Unicode version |
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1897 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.3.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
19.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2053 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 19.3.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nf5ri 2065 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | impbii 199 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
This theorem is referenced by: 19.16 2093 19.17 2094 19.27 2095 19.28 2096 19.37 2100 axrep4 4775 zfcndrep 9436 bj-alexbiex 32690 bj-alalbial 32692 bj-axrep4 32791 |
Copyright terms: Public domain | W3C validator |