MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3 Structured version   Visualization version   Unicode version

Theorem 19.3 2069
Description: A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. See 19.3v 1897 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
19.3.1  |-  F/ x ph
Assertion
Ref Expression
19.3  |-  ( A. x ph  <->  ph )

Proof of Theorem 19.3
StepHypRef Expression
1 sp 2053 . 2  |-  ( A. x ph  ->  ph )
2 19.3.1 . . 3  |-  F/ x ph
32nf5ri 2065 . 2  |-  ( ph  ->  A. x ph )
41, 3impbii 199 1  |-  ( A. x ph  <->  ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nf 1710
This theorem is referenced by:  19.16  2093  19.17  2094  19.27  2095  19.28  2096  19.37  2100  axrep4  4775  zfcndrep  9436  bj-alexbiex  32690  bj-alalbial  32692  bj-axrep4  32791
  Copyright terms: Public domain W3C validator