MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.44v Structured version   Visualization version   Unicode version

Theorem 19.44v 1912
Description: Version of 19.44 2106 with a dv condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
19.44v  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.44v
StepHypRef Expression
1 19.43 1810 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
2 19.9v 1896 . . 3  |-  ( E. x ps  <->  ps )
32orbi2i 541 . 2  |-  ( ( E. x ph  \/  E. x ps )  <->  ( E. x ph  \/  ps )
)
41, 3bitri 264 1  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705
This theorem is referenced by:  grothprim  9656
  Copyright terms: Public domain W3C validator