Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.9alt Structured version   Visualization version   Unicode version

Theorem 19.9alt 34252
Description: Version of 19.9t 2071 for universal quantifier. (Contributed by NM, 9-Nov-2020.)
Assertion
Ref Expression
19.9alt  |-  ( F/ x ph  ->  ( A. x ph  <->  ph ) )

Proof of Theorem 19.9alt
StepHypRef Expression
1 nfnt 1782 . . . 4  |-  ( F/ x ph  ->  F/ x  -.  ph )
2 19.9t 2071 . . . 4  |-  ( F/ x  -.  ph  ->  ( E. x  -.  ph  <->  -. 
ph ) )
31, 2syl 17 . . 3  |-  ( F/ x ph  ->  ( E. x  -.  ph  <->  -.  ph )
)
43con2bid 344 . 2  |-  ( F/ x ph  ->  ( ph 
<->  -.  E. x  -.  ph ) )
5 alex 1753 . 2  |-  ( A. x ph  <->  -.  E. x  -.  ph )
64, 5syl6rbbr 279 1  |-  ( F/ x ph  ->  ( A. x ph  <->  ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator