| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alex | Structured version Visualization version Unicode version | ||
| Description: Universal quantifier in terms of existential quantifier and negation. Theorem 19.6 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 304 |
. . 3
| |
| 2 | 1 | albii 1747 |
. 2
|
| 3 | alnex 1706 |
. 2
| |
| 4 | 2, 3 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: exnal 1754 2nalexn 1755 alimex 1758 19.3v 1897 nfa1 2028 sp 2053 exists2 2562 19.9alt 34252 pm10.253 38561 vk15.4j 38734 vk15.4jVD 39150 |
| Copyright terms: Public domain | W3C validator |