| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2if2 | Structured version Visualization version Unicode version | ||
| Description: Resolve two nested conditionals. (Contributed by Alexander van der Vekens, 27-Mar-2018.) |
| Ref | Expression |
|---|---|
| 2if2.1 |
|
| 2if2.2 |
|
| 2if2.3 |
|
| Ref | Expression |
|---|---|
| 2if2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2if2.1 |
. . 3
| |
| 2 | iftrue 4092 |
. . . 4
| |
| 3 | 2 | adantl 482 |
. . 3
|
| 4 | 1, 3 | eqtr4d 2659 |
. 2
|
| 5 | 2if2.2 |
. . . . . 6
| |
| 6 | 5 | 3expa 1265 |
. . . . 5
|
| 7 | iftrue 4092 |
. . . . . 6
| |
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | 6, 8 | eqtr4d 2659 |
. . . 4
|
| 10 | 2if2.3 |
. . . . . 6
| |
| 11 | 10 | 3expa 1265 |
. . . . 5
|
| 12 | iffalse 4095 |
. . . . . . 7
| |
| 13 | 12 | eqcomd 2628 |
. . . . . 6
|
| 14 | 13 | adantl 482 |
. . . . 5
|
| 15 | 11, 14 | eqtrd 2656 |
. . . 4
|
| 16 | 9, 15 | pm2.61dan 832 |
. . 3
|
| 17 | iffalse 4095 |
. . . 4
| |
| 18 | 17 | adantl 482 |
. . 3
|
| 19 | 16, 18 | eqtr4d 2659 |
. 2
|
| 20 | 4, 19 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: swrdccat3 13492 swrdccat 13493 swrdccat3a 13494 swrdccat3b 13496 pfxccat3 41426 |
| Copyright terms: Public domain | W3C validator |