MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Visualization version   Unicode version

Theorem 2moswap 2547
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2moswap  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) )

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 2027 . . . 4  |-  F/ y E. y ph
21moexex 2541 . . 3  |-  ( ( E* x E. y ph  /\  A. x E* y ph )  ->  E* y E. x ( E. y ph  /\  ph ) )
32expcom 451 . 2  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) )
4 19.8a 2052 . . . . 5  |-  ( ph  ->  E. y ph )
54pm4.71ri 665 . . . 4  |-  ( ph  <->  ( E. y ph  /\  ph ) )
65exbii 1774 . . 3  |-  ( E. x ph  <->  E. x
( E. y ph  /\ 
ph ) )
76mobii 2493 . 2  |-  ( E* y E. x ph  <->  E* y E. x ( E. y ph  /\  ph ) )
83, 7syl6ibr 242 1  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704   E*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  2euswap  2548  2rmoswap  41184
  Copyright terms: Public domain W3C validator