| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2euswap | Structured version Visualization version Unicode version | ||
| Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| 2euswap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim 2043 |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | 2moswap 2547 |
. . 3
| |
| 4 | 2, 3 | anim12d 586 |
. 2
|
| 5 | eu5 2496 |
. 2
| |
| 6 | eu5 2496 |
. 2
| |
| 7 | 4, 5, 6 | 3imtr4g 285 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: 2eu1 2553 euxfr2 3391 2reuswap 3410 2reuswap2 29328 |
| Copyright terms: Public domain | W3C validator |