Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem1 Structured version   Visualization version   Unicode version

Theorem 3dimlem1 34744
Description: Lemma for 3dim1 34753. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j  |-  .\/  =  ( join `  K )
3dim0.l  |-  .<_  =  ( le `  K )
3dim0.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
3dimlem1  |-  ( ( ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  P  =  Q )  ->  ( P  =/=  R  /\  -.  S  .<_  ( P  .\/  R
)  /\  -.  T  .<_  ( ( P  .\/  R )  .\/  S ) ) )

Proof of Theorem 3dimlem1
StepHypRef Expression
1 neeq1 2856 . . 3  |-  ( P  =  Q  ->  ( P  =/=  R  <->  Q  =/=  R ) )
2 oveq1 6657 . . . . 5  |-  ( P  =  Q  ->  ( P  .\/  R )  =  ( Q  .\/  R
) )
32breq2d 4665 . . . 4  |-  ( P  =  Q  ->  ( S  .<_  ( P  .\/  R )  <->  S  .<_  ( Q 
.\/  R ) ) )
43notbid 308 . . 3  |-  ( P  =  Q  ->  ( -.  S  .<_  ( P 
.\/  R )  <->  -.  S  .<_  ( Q  .\/  R
) ) )
52oveq1d 6665 . . . . 5  |-  ( P  =  Q  ->  (
( P  .\/  R
)  .\/  S )  =  ( ( Q 
.\/  R )  .\/  S ) )
65breq2d 4665 . . . 4  |-  ( P  =  Q  ->  ( T  .<_  ( ( P 
.\/  R )  .\/  S )  <->  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) )
76notbid 308 . . 3  |-  ( P  =  Q  ->  ( -.  T  .<_  ( ( P  .\/  R ) 
.\/  S )  <->  -.  T  .<_  ( ( Q  .\/  R )  .\/  S ) ) )
81, 4, 73anbi123d 1399 . 2  |-  ( P  =  Q  ->  (
( P  =/=  R  /\  -.  S  .<_  ( P 
.\/  R )  /\  -.  T  .<_  ( ( P  .\/  R ) 
.\/  S ) )  <-> 
( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) ) ) )
98biimparc 504 1  |-  ( ( ( Q  =/=  R  /\  -.  S  .<_  ( Q 
.\/  R )  /\  -.  T  .<_  ( ( Q  .\/  R ) 
.\/  S ) )  /\  P  =  Q )  ->  ( P  =/=  R  /\  -.  S  .<_  ( P  .\/  R
)  /\  -.  T  .<_  ( ( P  .\/  R )  .\/  S ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Atomscatm 34550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  3dim1  34753
  Copyright terms: Public domain W3C validator