![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aifftbifffaibifff | Structured version Visualization version Unicode version |
Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
Ref | Expression |
---|---|
aifftbifffaibifff.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
aifftbifffaibifff.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
aifftbifffaibifff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aifftbifffaibifff.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | aistia 41064 |
. . . 4
![]() ![]() |
3 | aifftbifffaibifff.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | aisfina 41065 |
. . . 4
![]() ![]() ![]() |
5 | 2, 4 | abnotbtaxb 41082 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | axorbtnotaiffb 41070 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nbfal 1495 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | biimpi 206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-xor 1465 df-tru 1486 df-fal 1489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |