![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bifal | Structured version Visualization version Unicode version |
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bifal.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
bifal |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bifal.1 |
. 2
![]() ![]() ![]() | |
2 | fal 1490 |
. 2
![]() ![]() ![]() | |
3 | 1, 2 | 2false 365 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-tru 1486 df-fal 1489 |
This theorem is referenced by: falantru 1508 ralnralall 4080 tgcgr4 25426 frgrregord013 27253 bj-df-nul 33017 bicontr 33879 aibnbaif 41074 aifftbifffaibif 41088 atnaiana 41090 |
Copyright terms: Public domain | W3C validator |