| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aifftbifffaibif | Structured version Visualization version Unicode version | ||
| Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| Ref | Expression |
|---|---|
| aifftbifffaibif.1 |
|
| aifftbifffaibif.2 |
|
| Ref | Expression |
|---|---|
| aifftbifffaibif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aifftbifffaibif.1 |
. . . . 5
| |
| 2 | 1 | aistia 41064 |
. . . 4
|
| 3 | aifftbifffaibif.2 |
. . . . 5
| |
| 4 | 3 | aisfina 41065 |
. . . 4
|
| 5 | 2, 4 | pm3.2i 471 |
. . 3
|
| 6 | annim 441 |
. . . 4
| |
| 7 | 6 | biimpi 206 |
. . 3
|
| 8 | 5, 7 | ax-mp 5 |
. 2
|
| 9 | 8 | bifal 1497 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: atnaiana 41090 |
| Copyright terms: Public domain | W3C validator |