MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimd Structured version   Visualization version   Unicode version

Theorem alrimd 2084
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2075. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
alrimd.1  |-  F/ x ph
alrimd.2  |-  F/ x ps
alrimd.3  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
alrimd  |-  ( ph  ->  ( ps  ->  A. x ch ) )

Proof of Theorem alrimd
StepHypRef Expression
1 alrimd.1 . 2  |-  F/ x ph
2 alrimd.2 . . 3  |-  F/ x ps
32a1i 11 . 2  |-  ( ph  ->  F/ x ps )
4 alrimd.3 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
51, 3, 4alrimdd 2083 1  |-  ( ph  ->  ( ps  ->  A. x ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nf 1710
This theorem is referenced by:  moexex  2541  ralrimd  2959  pssnn  8178  fiint  8237  wl-mo3t  33358  pm14.24  38633
  Copyright terms: Public domain W3C validator