MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiint Structured version   Visualization version   Unicode version

Theorem fiint 8237
Description: Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of  A is in  A." This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
fiint  |-  ( A. x  e.  A  A. y  e.  A  (
x  i^i  y )  e.  A  <->  A. x ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  A ) )
Distinct variable group:    x, y, A

Proof of Theorem fiint
Dummy variables  z  w  v  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 7979 . . . . . . 7  |-  ( x  e.  Fin  <->  E. y  e.  om  x  ~~  y
)
2 ensym 8005 . . . . . . . . 9  |-  ( x 
~~  y  ->  y  ~~  x )
3 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( y  =  (/)  ->  ( y 
~~  x  <->  (/)  ~~  x
) )
43anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( y  =  (/)  ->  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
) ) )
54imbi1d 331 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A
)  <->  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A ) ) )
65albidv 1849 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A ) ) )
7 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  (
y  ~~  x  <->  v  ~~  x ) )
87anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( y  =  v  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x ) ) )
98imbi1d 331 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  ( (
( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) ) )
109albidv 1849 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A ) ) )
11 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( y  =  suc  v  -> 
( y  ~~  x  <->  suc  v  ~~  x ) )
1211anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( y  =  suc  v  -> 
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x ) ) )
1312imbi1d 331 . . . . . . . . . . . . . 14  |-  ( y  =  suc  v  -> 
( ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  ( (
( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
1413albidv 1849 . . . . . . . . . . . . 13  |-  ( y  =  suc  v  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A
)  <->  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
15 ensym 8005 . . . . . . . . . . . . . . . . . . . 20  |-  ( (/)  ~~  x  ->  x  ~~  (/) )
16 en0 8019 . . . . . . . . . . . . . . . . . . . 20  |-  ( x 
~~  (/)  <->  x  =  (/) )
1715, 16sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  ~~  x  ->  x  =  (/) )
1817anim1i 592 . . . . . . . . . . . . . . . . . 18  |-  ( (
(/)  ~~  x  /\  x  =/=  (/) )  ->  (
x  =  (/)  /\  x  =/=  (/) ) )
1918ancoms 469 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =/=  (/)  /\  (/)  ~~  x
)  ->  ( x  =  (/)  /\  x  =/=  (/) ) )
2019adantll 750 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x )  ->  (
x  =  (/)  /\  x  =/=  (/) ) )
21 df-ne 2795 . . . . . . . . . . . . . . . . 17  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
22 pm3.24 926 . . . . . . . . . . . . . . . . . 18  |-  -.  (
x  =  (/)  /\  -.  x  =  (/) )
2322pm2.21i 116 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  (/)  /\  -.  x  =  (/) )  ->  |^| x  e.  A
)
2421, 23sylan2b 492 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  (/)  /\  x  =/=  (/) )  ->  |^| x  e.  A )
2520, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x )  ->  |^| x  e.  A )
2625ax-gen 1722 . . . . . . . . . . . . . 14  |-  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A )
2726a1i 11 . . . . . . . . . . . . 13  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A ) )
28 nfv 1843 . . . . . . . . . . . . . . 15  |-  F/ x A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A
29 nfa1 2028 . . . . . . . . . . . . . . 15  |-  F/ x A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )
30 bren 7964 . . . . . . . . . . . . . . . . . . 19  |-  ( suc  v  ~~  x  <->  E. f 
f : suc  v -1-1-onto-> x
)
31 ssel 3597 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x 
C_  A  ->  (
( f `  v
)  e.  x  -> 
( f `  v
)  e.  A ) )
32 f1of 6137 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f : suc  v -1-1-onto-> x  -> 
f : suc  v --> x )
33 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  v  e. 
_V
3433sucid 5804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  v  e. 
suc  v
35 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f : suc  v --> x  /\  v  e.  suc  v )  ->  (
f `  v )  e.  x )
3632, 34, 35sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : suc  v -1-1-onto-> x  -> 
( f `  v
)  e.  x )
3731, 36impel 485 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x )  ->  ( f `  v )  e.  A
)
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( f `  v
)  e.  A )
39 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f " v )  =/=  (/)  <->  -.  ( f " v )  =  (/) )
40 imassrn 5477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( f
" v )  C_  ran  f
41 dff1o2 6142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( f : suc  v -1-1-onto-> x  <->  ( f  Fn  suc  v  /\  Fun  `' f  /\  ran  f  =  x ) )
4241simp3bi 1078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( f : suc  v -1-1-onto-> x  ->  ran  f  =  x
)
4340, 42syl5sseq 3653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f : suc  v -1-1-onto-> x  -> 
( f " v
)  C_  x )
44 sstr2 3610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( f " v ) 
C_  x  ->  (
x  C_  A  ->  ( f " v ) 
C_  A ) )
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( f : suc  v -1-1-onto-> x  -> 
( x  C_  A  ->  ( f " v
)  C_  A )
)
4645anim1d 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( x  C_  A  /\  ( f "
v )  =/=  (/) )  -> 
( ( f "
v )  C_  A  /\  ( f " v
)  =/=  (/) ) ) )
47 f1of1 6136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f : suc  v -1-1-onto-> x  -> 
f : suc  v -1-1->
x )
48 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  x  e. 
_V
49 sssucid 5802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  v  C_  suc  v
50 f1imaen2g 8017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( f : suc  v -1-1-> x  /\  x  e.  _V )  /\  (
v  C_  suc  v  /\  v  e.  _V )
)  ->  ( f " v )  ~~  v )
5149, 33, 50mpanr12 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( f : suc  v -1-1->
x  /\  x  e.  _V )  ->  ( f
" v )  ~~  v )
5247, 48, 51sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( f : suc  v -1-1-onto-> x  -> 
( f " v
)  ~~  v )
5352ensymd 8007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f : suc  v -1-1-onto-> x  -> 
v  ~~  ( f " v ) )
5446, 53jctird 567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( x  C_  A  /\  ( f "
v )  =/=  (/) )  -> 
( ( ( f
" v )  C_  A  /\  ( f "
v )  =/=  (/) )  /\  v  ~~  ( f "
v ) ) ) )
55 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  f  e. 
_V
5655imaex 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f
" v )  e. 
_V
57 sseq1 3626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( x  =  ( f "
v )  ->  (
x  C_  A  <->  ( f " v )  C_  A ) )
58 neeq1 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( x  =  ( f "
v )  ->  (
x  =/=  (/)  <->  ( f " v )  =/=  (/) ) )
5957, 58anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( f "
v )  ->  (
( x  C_  A  /\  x  =/=  (/) )  <->  ( (
f " v ) 
C_  A  /\  (
f " v )  =/=  (/) ) ) )
60 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( f "
v )  ->  (
v  ~~  x  <->  v  ~~  ( f " v
) ) )
6159, 60anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( f "
v )  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  <->  ( (
( f " v
)  C_  A  /\  ( f " v
)  =/=  (/) )  /\  v  ~~  ( f "
v ) ) ) )
62 inteq 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( f "
v )  ->  |^| x  =  |^| ( f "
v ) )
6362eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( f "
v )  ->  ( |^| x  e.  A  <->  |^| ( f " v
)  e.  A ) )
6461, 63imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  =  ( f "
v )  ->  (
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  <->  ( (
( ( f "
v )  C_  A  /\  ( f " v
)  =/=  (/) )  /\  v  ~~  ( f "
v ) )  ->  |^| ( f " v
)  e.  A ) ) )
6556, 64spcv 3299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  (
( ( ( f
" v )  C_  A  /\  ( f "
v )  =/=  (/) )  /\  v  ~~  ( f "
v ) )  ->  |^| ( f " v
)  e.  A ) )
6654, 65sylan9 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f : suc  v -1-1-onto-> x  /\  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) )  ->  (
( x  C_  A  /\  ( f " v
)  =/=  (/) )  ->  |^| ( f " v
)  e.  A ) )
67 ineq1 3807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  =  |^| ( f
" v )  -> 
( z  i^i  w
)  =  ( |^| ( f " v
)  i^i  w )
)
6867eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  =  |^| ( f
" v )  -> 
( ( z  i^i  w )  e.  A  <->  (
|^| ( f "
v )  i^i  w
)  e.  A ) )
69 ineq2 3808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( w  =  ( f `  v )  ->  ( |^| ( f " v
)  i^i  w )  =  ( |^| (
f " v )  i^i  ( f `  v ) ) )
7069eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( w  =  ( f `  v )  ->  (
( |^| ( f "
v )  i^i  w
)  e.  A  <->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) )
7168, 70rspc2v 3322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
|^| ( f "
v )  e.  A  /\  ( f `  v
)  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) )
7271ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( |^| ( f " v
)  e.  A  -> 
( ( f `  v )  e.  A  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) ) )
7366, 72syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f : suc  v -1-1-onto-> x  /\  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) )  ->  (
( x  C_  A  /\  ( f " v
)  =/=  (/) )  -> 
( ( f `  v )  e.  A  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) ) ) )
7473com4r 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( f : suc  v -1-1-onto-> x  /\  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) )  ->  (
( x  C_  A  /\  ( f " v
)  =/=  (/) )  -> 
( ( f `  v )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) ) ) )
7574exp5c 644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( f : suc  v -1-1-onto-> x  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( x  C_  A  ->  ( (
f " v )  =/=  (/)  ->  ( (
f `  v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) ) ) ) ) )
7675com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x 
C_  A  ->  (
f : suc  v -1-1-onto-> x  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( f " v )  =/=  (/)  ->  ( (
f `  v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) ) ) ) ) )
7776imp43 621 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( ( f "
v )  =/=  (/)  ->  (
( f `  v
)  e.  A  -> 
( |^| ( f "
v )  i^i  (
f `  v )
)  e.  A ) ) )
7839, 77syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( -.  ( f
" v )  =  (/)  ->  ( ( f `
 v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) ) )
79 inteq 4478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f " v )  =  (/)  ->  |^| (
f " v )  =  |^| (/) )
80 int0 4490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  |^| (/)  =  _V
8179, 80syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f " v )  =  (/)  ->  |^| (
f " v )  =  _V )
8281ineq1d 3813 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f " v )  =  (/)  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  =  ( _V  i^i  (
f `  v )
) )
83 ssv 3625 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f `
 v )  C_  _V
84 sseqin2 3817 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f `  v ) 
C_  _V  <->  ( _V  i^i  ( f `  v
) )  =  ( f `  v ) )
8583, 84mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( _V 
i^i  ( f `  v ) )  =  ( f `  v
)
8682, 85syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f " v )  =  (/)  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  =  ( f `  v
) )
8786eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f " v )  =  (/)  ->  ( (
|^| ( f "
v )  i^i  (
f `  v )
)  e.  A  <->  ( f `  v )  e.  A
) )
8887biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f " v )  =  (/)  ->  ( ( f `  v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) )
8978, 88pm2.61d2 172 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( ( f `  v )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) )
9038, 89mpd 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( |^| ( f "
v )  i^i  (
f `  v )
)  e.  A )
91 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f `
 v )  e. 
_V
9291intunsn 4516 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  |^| (
( f " v
)  u.  { ( f `  v ) } )  =  (
|^| ( f "
v )  i^i  (
f `  v )
)
93 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( f : suc  v -1-1-onto-> x  -> 
f  Fn  suc  v
)
94 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f  Fn  suc  v  /\  v  e.  suc  v )  ->  { ( f `  v ) }  =  ( f
" { v } ) )
9593, 34, 94sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f : suc  v -1-1-onto-> x  ->  { ( f `  v ) }  =  ( f " {
v } ) )
9695uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( f "
v )  u.  {
( f `  v
) } )  =  ( ( f "
v )  u.  (
f " { v } ) ) )
97 df-suc 5729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  suc  v  =  ( v  u. 
{ v } )
9897imaeq2i 5464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f
" suc  v )  =  ( f "
( v  u.  {
v } ) )
99 imaundi 5545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f
" ( v  u. 
{ v } ) )  =  ( ( f " v )  u.  ( f " { v } ) )
10098, 99eqtr2i 2645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f " v )  u.  ( f " { v } ) )  =  ( f
" suc  v )
10196, 100syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( f "
v )  u.  {
( f `  v
) } )  =  ( f " suc  v ) )
102 f1ofo 6144 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : suc  v -1-1-onto-> x  -> 
f : suc  v -onto->
x )
103 foima 6120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : suc  v -onto-> x  ->  ( f " suc  v )  =  x )
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : suc  v -1-1-onto-> x  -> 
( f " suc  v )  =  x )
105101, 104eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( f "
v )  u.  {
( f `  v
) } )  =  x )
106105inteqd 4480 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : suc  v -1-1-onto-> x  ->  |^| ( ( f "
v )  u.  {
( f `  v
) } )  = 
|^| x )
10792, 106syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : suc  v -1-1-onto-> x  -> 
( |^| ( f "
v )  i^i  (
f `  v )
)  =  |^| x
)
108107eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( |^| (
f " v )  i^i  ( f `  v ) )  e.  A  <->  |^| x  e.  A
) )
109108ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( ( |^| (
f " v )  i^i  ( f `  v ) )  e.  A  <->  |^| x  e.  A
) )
11090, 109mpbid 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  ->  |^| x  e.  A
)
111110exp43 640 . . . . . . . . . . . . . . . . . . . 20  |-  ( x 
C_  A  ->  (
f : suc  v -1-1-onto-> x  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  |^| x  e.  A ) ) ) )
112111exlimdv 1861 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  A  ->  ( E. f  f : suc  v -1-1-onto-> x  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) ) )
11330, 112syl5bi 232 . . . . . . . . . . . . . . . . . 18  |-  ( x 
C_  A  ->  ( suc  v  ~~  x  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  |^| x  e.  A ) ) ) )
114113imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( x  C_  A  /\  suc  v  ~~  x )  ->  ( A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) )
115114adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  ( A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) )
116115com13 88 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
11728, 29, 116alrimd 2084 . . . . . . . . . . . . . 14  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
118117a1i 11 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) ) )
1196, 10, 14, 27, 118finds2 7094 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A ) ) )
120 sp 2053 . . . . . . . . . . . 12  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A
) )
121119, 120syl6 35 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  -> 
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A ) ) )
122121exp4a 633 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  -> 
( ( x  C_  A  /\  x  =/=  (/) )  -> 
( y  ~~  x  ->  |^| x  e.  A
) ) ) )
123122com24 95 . . . . . . . . 9  |-  ( y  e.  om  ->  (
y  ~~  x  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  |^| x  e.  A
) ) ) )
1242, 123syl5 34 . . . . . . . 8  |-  ( y  e.  om  ->  (
x  ~~  y  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  |^| x  e.  A
) ) ) )
125124rexlimiv 3027 . . . . . . 7  |-  ( E. y  e.  om  x  ~~  y  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) )
1261, 125sylbi 207 . . . . . 6  |-  ( x  e.  Fin  ->  (
( x  C_  A  /\  x  =/=  (/) )  -> 
( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  |^| x  e.  A
) ) )
127126com13 88 . . . . 5  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  (
x  e.  Fin  ->  |^| x  e.  A ) ) )
128127impd 447 . . . 4  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A
) )
129128alrimiv 1855 . . 3  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A ) )
130 zfpair2 4907 . . . . . 6  |-  { z ,  w }  e.  _V
131 sseq1 3626 . . . . . . . . 9  |-  ( x  =  { z ,  w }  ->  (
x  C_  A  <->  { z ,  w }  C_  A
) )
132 neeq1 2856 . . . . . . . . 9  |-  ( x  =  { z ,  w }  ->  (
x  =/=  (/)  <->  { z ,  w }  =/=  (/) ) )
133131, 132anbi12d 747 . . . . . . . 8  |-  ( x  =  { z ,  w }  ->  (
( x  C_  A  /\  x  =/=  (/) )  <->  ( {
z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) ) ) )
134 eleq1 2689 . . . . . . . 8  |-  ( x  =  { z ,  w }  ->  (
x  e.  Fin  <->  { z ,  w }  e.  Fin ) )
135133, 134anbi12d 747 . . . . . . 7  |-  ( x  =  { z ,  w }  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  <->  ( ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin ) ) )
136 inteq 4478 . . . . . . . 8  |-  ( x  =  { z ,  w }  ->  |^| x  =  |^| { z ,  w } )
137136eleq1d 2686 . . . . . . 7  |-  ( x  =  { z ,  w }  ->  ( |^| x  e.  A  <->  |^|
{ z ,  w }  e.  A )
)
138135, 137imbi12d 334 . . . . . 6  |-  ( x  =  { z ,  w }  ->  (
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  <->  ( (
( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin )  ->  |^| { z ,  w }  e.  A ) ) )
139130, 138spcv 3299 . . . . 5  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  ->  (
( ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  { z ,  w }  e.  Fin )  ->  |^| { z ,  w }  e.  A ) )
140 vex 3203 . . . . . . 7  |-  z  e. 
_V
141 vex 3203 . . . . . . 7  |-  w  e. 
_V
142140, 141prss 4351 . . . . . 6  |-  ( ( z  e.  A  /\  w  e.  A )  <->  { z ,  w }  C_  A )
143140prnz 4310 . . . . . . 7  |-  { z ,  w }  =/=  (/)
144143biantru 526 . . . . . 6  |-  ( { z ,  w }  C_  A  <->  ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) ) )
145 prfi 8235 . . . . . . 7  |-  { z ,  w }  e.  Fin
146145biantru 526 . . . . . 6  |-  ( ( { z ,  w }  C_  A  /\  {
z ,  w }  =/=  (/) )  <->  ( ( { z ,  w }  C_  A  /\  {
z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin ) )
147142, 144, 1463bitrri 287 . . . . 5  |-  ( ( ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin )  <->  ( z  e.  A  /\  w  e.  A ) )
148140, 141intpr 4510 . . . . . 6  |-  |^| { z ,  w }  =  ( z  i^i  w
)
149148eleq1i 2692 . . . . 5  |-  ( |^| { z ,  w }  e.  A  <->  ( z  i^i  w )  e.  A
)
150139, 147, 1493imtr3g 284 . . . 4  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  ->  (
( z  e.  A  /\  w  e.  A
)  ->  ( z  i^i  w )  e.  A
) )
151150ralrimivv 2970 . . 3  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  ->  A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A
)
152129, 151impbii 199 . 2  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  <->  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A
) )
153 ineq1 3807 . . . 4  |-  ( x  =  z  ->  (
x  i^i  y )  =  ( z  i^i  y ) )
154153eleq1d 2686 . . 3  |-  ( x  =  z  ->  (
( x  i^i  y
)  e.  A  <->  ( z  i^i  y )  e.  A
) )
155 ineq2 3808 . . . 4  |-  ( y  =  w  ->  (
z  i^i  y )  =  ( z  i^i  w ) )
156155eleq1d 2686 . . 3  |-  ( y  =  w  ->  (
( z  i^i  y
)  e.  A  <->  ( z  i^i  w )  e.  A
) )
157154, 156cbvral2v 3179 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
x  i^i  y )  e.  A  <->  A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A )
158 df-3an 1039 . . . 4  |-  ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin ) )
159158imbi1i 339 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  A )  <->  ( (
( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A
) )
160159albii 1747 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  A )  <->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A ) )
161152, 157, 1603bitr4i 292 1  |-  ( A. x  e.  A  A. y  e.  A  (
x  i^i  y )  e.  A  <->  A. x ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   |^|cint 4475   class class class wbr 4653   `'ccnv 5113   ran crn 5115   "cima 5117   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   omcom 7065    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  dffi2  8329  istop2g  20701  neificl  33549
  Copyright terms: Public domain W3C validator