Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alsi-no-surprise Structured version   Visualization version   Unicode version

Theorem alsi-no-surprise 42542
Description: Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi 42534; the proof itself builds on alimp-no-surprise 42527. For a contrast, see alimp-surprise 42526. (Contributed by David A. Wheeler, 27-Oct-2018.)
Assertion
Ref Expression
alsi-no-surprise  |-  -.  ( A.! x ( ph  ->  ps )  /\  A.! x
( ph  ->  -.  ps ) )

Proof of Theorem alsi-no-surprise
StepHypRef Expression
1 alimp-no-surprise 42527 . 2  |-  -.  ( A. x ( ph  ->  ps )  /\  A. x
( ph  ->  -.  ps )  /\  E. x ph )
2 df-alsi 42534 . . . 4  |-  ( A.! x ( ph  ->  ps )  <->  ( A. x
( ph  ->  ps )  /\  E. x ph )
)
3 df-alsi 42534 . . . 4  |-  ( A.! x ( ph  ->  -. 
ps )  <->  ( A. x ( ph  ->  -. 
ps )  /\  E. x ph ) )
42, 3anbi12i 733 . . 3  |-  ( ( A.! x ( ph  ->  ps )  /\  A.! x ( ph  ->  -. 
ps ) )  <->  ( ( A. x ( ph  ->  ps )  /\  E. x ph )  /\  ( A. x ( ph  ->  -. 
ps )  /\  E. x ph ) ) )
5 anandi3r 1053 . . 3  |-  ( ( A. x ( ph  ->  ps )  /\  E. x ph  /\  A. x
( ph  ->  -.  ps ) )  <->  ( ( A. x ( ph  ->  ps )  /\  E. x ph )  /\  ( A. x ( ph  ->  -. 
ps )  /\  E. x ph ) ) )
6 3ancomb 1047 . . 3  |-  ( ( A. x ( ph  ->  ps )  /\  E. x ph  /\  A. x
( ph  ->  -.  ps ) )  <->  ( A. x ( ph  ->  ps )  /\  A. x
( ph  ->  -.  ps )  /\  E. x ph ) )
74, 5, 63bitr2i 288 . 2  |-  ( ( A.! x ( ph  ->  ps )  /\  A.! x ( ph  ->  -. 
ps ) )  <->  ( A. x ( ph  ->  ps )  /\  A. x
( ph  ->  -.  ps )  /\  E. x ph ) )
81, 7mtbir 313 1  |-  -.  ( A.! x ( ph  ->  ps )  /\  A.! x
( ph  ->  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481   E.wex 1704   A.!walsi 42532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-ex 1705  df-alsi 42534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator