![]() |
Metamath
Proof Explorer Theorem List (p. 426 of 426) | < Previous Wrap > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sec0 42501 | The value of the secant function at zero is one. (Contributed by David A. Wheeler, 16-Mar-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | onetansqsecsq 42502 |
Prove the tangent squared secant squared identity ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cotsqcscsq 42503 |
Prove the tangent squared cosecant squared identity ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Utility theorems for "if". | ||
Theorem | ifnmfalse 42504 | If A is not a member of B, but an "if" condition requires it, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs vs. applying iffalse 4095 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Most of this subsection was moved to main set.mm, section "Logarithms to an arbitrary base". | ||
Theorem | logb2aval 42505 |
Define the value of the logb function, the logarithm generalized to
an
arbitrary base, when used in the 2-argument form logb ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Define "log using an arbitrary base" function and then prove some of its properties. This builds on previous work by Stefan O'Rear.
This supports the notational form
This form is less convenient to work with inside metamath as compared to the
| ||
Syntax | clog- 42506 | Extend class notation to include the logarithm generalized to an arbitrary base. |
![]() | ||
Definition | df-logbALT 42507* |
Define the log_ operator. This is the logarithm generalized to an
arbitrary base. It can be used as ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
EXPERIMENTAL. Several terms are used in comments but not directly defined in set.mm. For example, there are proofs that a number of specific relations are reflexive, but there is no formal definition of what being reflexive actually *means*. Stating the relationships directly, instead of defining a broader property such as being reflexive, can reduce proof size (because the definition of that property does not need to be expanded later). A disadvantage, however, is that there are several terms that are widely used in comments but do not have a clear formal definition. Here we define wffs that formally define some of these key terms. The intent isn't to use these directly, but to instead provide a clear formal definition of widely-used mathematical terminology (we even use this terminology within the comments of set.mm itself). We could define these using extensible structures, but doing so appears overly restrictive. These definitions don't require the use of extensible structures; requiring something to be in an extensible structure to use them is too restrictive. Even if an extensible structure is already in use, it may in use for other things. For example, in geometry, there is a "less-than" relation, but while the geometry itself is an extensible structure, we would have to build a new structure to state "the geometric less-than relation is transitive" (which is more work than it's probably worth). By creating definitions that aren't tied to extensible structures we create definitions that can be applied to anything, including extensible structures, in whatever whatever way we'd like.
Benoit suggests that it might be better to define these as functions. There
are many advantages to doing that, but they won't work for proper classes.
I'm currently trying to also support proper classes, so I have not taken that
approach, but if that turns out to be unreasonable then Benoit's approach is
very much worth considering. Examples would be:
BinRel = For more discussion see: https://github.com/metamath/set.mm/pull/1286 | ||
Syntax | wreflexive 42508 | Extend wff definition to include "Reflexive" applied to a class, which is true iff class R is a reflexive relation over the set A. See df-reflexive 42509. (Contributed by David A. Wheeler, 1-Dec-2019.) |
![]() ![]() ![]() | ||
Definition | df-reflexive 42509* |
Define reflexive relation; relation ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | wirreflexive 42510 | Extend wff definition to include "Irreflexive" applied to a class, which is true iff class R is an irreflexive relation over the set A. See df-irreflexive 42511. (Contributed by David A. Wheeler, 1-Dec-2019.) |
![]() ![]() ![]() | ||
Definition | df-irreflexive 42511* |
Define irreflexive relation; relation ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
This is an experimental approach to make it clearer (and easier) to do basic algebra in set.mm. These little theorems support basic algebra on equations at a slightly higher conceptual level. Instead of always having to "build up" equivalent expressions for one side of an equation, these theorems allow you to directly manipulate an equality. These higher-level steps lead to easier to understand proofs when they can be used, as well as proofs that are slightly shorter (when measured in steps). There are disadvantages. In particular, this approach requires many theorems (for many permutations to provide all of the operations). It can also only handle certain cases; more complex approaches must still be approached by "building up" equalities as is done today. However, I expect that we can create enough theorems to make it worth doing. I'm trying this out to see if this is helpful and if the number of permutations is manageable. To commute LHS for addition, use addcomli 10228. We might want to switch to a naming convention like addcomli 10228. | ||
Theorem | comraddi 42512 | Commute RHS addition. See addcomli 10228 to commute addition on LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mvlladdd 42513 | Move LHS left addition to RHS. (Contributed by David A. Wheeler, 15-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mvlraddi 42514 | Move LHS right addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mvrladdd 42515 | Move RHS left addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mvrladdi 42516 | Move RHS left addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | assraddsubd 42517 | Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | assraddsubi 42518 | Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | joinlmuladdmuli 42519 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | joinlmulsubmuld 42520 | Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | joinlmulsubmuli 42521 | Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mvlrmuld 42522 | Move LHS right multiplication to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mvlrmuli 42523 | Move LHS right multiplication to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Examples using the algebra helpers. | ||
Theorem | i2linesi 42524 | Solve for the intersection of two lines expressed in Y = MX+B form (note that the lines cannot be vertical). Here we use inference form. We just solve for X, since Y can be trivially found by using X. This is an example of how to use the algebra helpers. Notice that because this proof uses algebra helpers, the main steps of the proof are higher level and easier to follow by a human reader. (Contributed by David A. Wheeler, 11-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | i2linesd 42525 | Solve for the intersection of two lines expressed in Y = MX+B form (note that the lines cannot be vertical). Here we use deduction form. We just solve for X, since Y can be trivially found by using X. This is an example of how to use the algebra helpers. Notice that because this proof uses algebra helpers, the main steps of the proof are higher level and easier to follow by a human reader. (Contributed by David A. Wheeler, 15-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Prove that some formal expressions using classical logic have meanings that might not be obvious to some lay readers. I find these are common mistakes and are worth pointing out to new people. In particular we prove alimp-surprise 42526, empty-surprise 42528, and eximp-surprise 42530. | ||
Theorem | alimp-surprise 42526 |
Demonstrate that when using "for all" and material implication the
consequent can be both always true and always false if there is no case
where the antecedent is true.
Those inexperienced with formal notations of classical logic can be
surprised with what "for all" and material implication do
together when
the implication's antecedent is never true. This can happen, for
example, when the antecedent is set membership but the set is the empty
set (e.g.,
This is perhaps best explained using an example. The sentence "All
Martians are green" would typically be represented formally using
the
expression
Here are a few technical notes. In this notation, In natural language the term "implies" often presumes that the antecedent can occur in at one least circumstance and that there is some sort of causality. However, exactly what causality means is complex and situation-dependent. Modern logic typically uses material implication instead; this has a rigorous definition, but it is important for new users of formal notation to precisely understand it. There are ways to solve this, e.g., expressly stating that the antecedent exists (see alimp-no-surprise 42527) or using the allsome quantifier (df-alsi 42534) . For other "surprises" for new users of classical logic, see empty-surprise 42528 and eximp-surprise 42530. (Contributed by David A. Wheeler, 17-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alimp-no-surprise 42527 | There is no "surprise" in a for-all with implication if there exists a value where the antecedent is true. This is one way to prevent for-all with implication from allowing anything. For a contrast, see alimp-surprise 42526. The allsome quantifier also counters this problem, see df-alsi 42534. (Contributed by David A. Wheeler, 27-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | empty-surprise 42528 |
Demonstrate that when using restricted "for all" over a class the
expression can be both always true and always false if the class is
empty.
Those inexperienced with formal notations of classical logic can be
surprised with what restricted "for all" does over an empty
set. It is
important to note that
If you want the expression
Some materials on logic (particularly those that discuss
"syllogisms")
are based on the much older work by Aristotle, but Aristotle expressly
excluded empty sets from his system. Aristotle had a specific goal; he
was trying to develop a "companion-logic" for science. He
relegates
fictions like fairy godmothers and mermaids and unicorns to the realms
of poetry and literature... This is why he leaves no room for such
non-existent entities in his logic." (Groarke, "Aristotle:
Logic",
section 7. (Existential Assumptions), Internet Encyclopedia of
Philosophy, http://www.iep.utm.edu/aris-log/).
While this made
sense for his purposes, it is less flexible than modern (classical)
logic which does permit empty sets. If you wish to make claims
that
require a nonempty set, you must expressly include that requirement,
e.g., by stating For another "surprise" for new users of classical logic, see alimp-surprise 42526 and eximp-surprise 42530. (Contributed by David A. Wheeler, 20-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | empty-surprise2 42529 |
"Prove" that false is true when using a restricted "for
all" over the
empty set, to demonstrate that the expression is always true if the
value ranges over the empty set.
Those inexperienced with formal notations of classical logic can be surprised with what restricted "for all" does over an empty set. We proved the general case in empty-surprise 42528. Here we prove an extreme example: we "prove" that false is true. Of course, we actually do no such thing (see notfal 1519); the problem is that restricted "for all" works in ways that might seem counterintuitive to the inexperienced when given an empty set. Solutions to this can include requiring that the set not be empty or by using the allsome quantifier df-alsc 42535. (Contributed by David A. Wheeler, 20-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | eximp-surprise 42530 |
Show what implication inside "there exists" really expands to (using
implication directly inside "there exists" is usually a
mistake).
Those inexperienced with formal notations of classical logic may use expressions combining "there exists" with implication. That is usually a mistake, because as proven using imor 428, such an expression can be rewritten using not with or - and that is often not what the author intended. New users of formal notation who use "there exists" with an implication should consider if they meant "and" instead of "implies". A stark example is shown in eximp-surprise2 42531. See also alimp-surprise 42526 and empty-surprise 42528. (Contributed by David A. Wheeler, 17-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | eximp-surprise2 42531 |
Show that "there exists" with an implication is always true if there
exists a situation where the antecedent is false.
Those inexperienced with formal notations of classical logic may use
expressions combining "there exists" with implication. This
is usually
a mistake, because that combination does not mean what an inexperienced
person might think it means. For example, if there is some object that
does not meet the precondition |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
These are definitions and proofs involving an experimental "allsome" quantifier (aka "all some").
In informal language, statements like
"All Martians are green" imply that there is at least one Martian.
But it's easy to mistranslate informal language into formal notations
because similar statements like The "allsome" quantifier expressly includes the notion of both "all" and "there exists at least one" (aka some), and is defined to make it easier to more directly express both notions. The hope is that if a quantifier more directly expresses this concept, it will be used instead and reduce the risk of creating formal expressions that look okay but in fact are mistranslations. The term "allsome" was chosen because it's short, easy to say, and clearly hints at the two concepts it combines. I do not expect this to be used much in metamath, because in metamath there's a general policy of avoiding the use of new definitions unless there are very strong reasons to do so. Instead, my goal is to rigorously define this quantifier and demonstrate a few basic properties of it.
The syntax allows two forms that look like they would be problematic,
but they are fine. When applied to a top-level implication we allow
For more, see "The Allsome Quantifier" by David A. Wheeler at https://dwheeler.com/essays/allsome.html I hope that others will eventually agree that allsome is awesome. | ||
Syntax | walsi 42532 |
Extend wff definition to include "all some" applied to a top-level
implication, which means ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | walsc 42533 |
Extend wff definition to include "all some" applied to a class, which
means ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-alsi 42534 |
Define "all some" applied to a top-level implication, which means
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-alsc 42535 |
Define "all some" applied to a class, which means ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alsconv 42536 | There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alsi1d 42537 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alsi2d 42538 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alsc1d 42539 | Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alsc2d 42540 | Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alscn0d 42541* | Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | alsi-no-surprise 42542 | Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi 42534; the proof itself builds on alimp-no-surprise 42527. For a contrast, see alimp-surprise 42526. (Contributed by David A. Wheeler, 27-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Miscellaneous proofs. | ||
Theorem | 5m4e1 42543 | Prove that 5 - 4 = 1. (Contributed by David A. Wheeler, 31-Jan-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 2p2ne5 42544 |
Prove that ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | resolution 42545 | Resolution rule. This is the primary inference rule in some automated theorem provers such as prover9. The resolution rule can be traced back to Davis and Putnam (1960). (Contributed by David A. Wheeler, 9-Feb-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | testable 42546 |
In classical logic all wffs are testable, that is, it is always true that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | aacllem 42547* |
Lemma for other theorems about ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | amgmwlem 42548 | Weighted version of amgmlem 24716. (Contributed by Kunhao Zheng, 19-Jun-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | amgmlemALT 42549 | Alternate proof of amgmlem 24716 using amgmwlem 42548. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Kunhao Zheng, 20-Jun-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | amgmw2d 42550 |
Weighted arithmetic-geometric mean inequality for ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | young2d 42551 |
Young's inequality for ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Wrap > |
Copyright terms: Public domain | < Previous Wrap > |