MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alxfr Structured version   Visualization version   Unicode version

Theorem alxfr 4878
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
alxfr  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Distinct variable groups:    x, A    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    A( y)    B( x, y)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcgv 3293 . . . . . 6  |-  ( A  e.  B  ->  ( A. x ph  ->  ps ) )
32com12 32 . . . . 5  |-  ( A. x ph  ->  ( A  e.  B  ->  ps )
)
43alimdv 1845 . . . 4  |-  ( A. x ph  ->  ( A. y  A  e.  B  ->  A. y ps )
)
54com12 32 . . 3  |-  ( A. y  A  e.  B  ->  ( A. x ph  ->  A. y ps )
)
65adantr 481 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  ->  A. y ps ) )
7 nfa1 2028 . . . . . 6  |-  F/ y A. y ps
8 nfv 1843 . . . . . 6  |-  F/ y
ph
9 sp 2053 . . . . . . 7  |-  ( A. y ps  ->  ps )
109, 1syl5ibrcom 237 . . . . . 6  |-  ( A. y ps  ->  ( x  =  A  ->  ph )
)
117, 8, 10exlimd 2087 . . . . 5  |-  ( A. y ps  ->  ( E. y  x  =  A  ->  ph ) )
1211alimdv 1845 . . . 4  |-  ( A. y ps  ->  ( A. x E. y  x  =  A  ->  A. x ph ) )
1312com12 32 . . 3  |-  ( A. x E. y  x  =  A  ->  ( A. y ps  ->  A. x ph ) )
1413adantl 482 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. y ps  ->  A. x ph ) )
156, 14impbid 202 1  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator