| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxfrd | Structured version Visualization version Unicode version | ||
| Description: Transfer universal
quantification from a variable |
| Ref | Expression |
|---|---|
| ralxfrd.1 |
|
| ralxfrd.2 |
|
| ralxfrd.3 |
|
| Ref | Expression |
|---|---|
| ralxfrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfrd.1 |
. . . 4
| |
| 2 | ralxfrd.3 |
. . . . 5
| |
| 3 | 2 | adantlr 751 |
. . . 4
|
| 4 | 1, 3 | rspcdv 3312 |
. . 3
|
| 5 | 4 | ralrimdva 2969 |
. 2
|
| 6 | ralxfrd.2 |
. . . 4
| |
| 7 | r19.29 3072 |
. . . . . 6
| |
| 8 | 2 | exbiri 652 |
. . . . . . . . 9
|
| 9 | 8 | com23 86 |
. . . . . . . 8
|
| 10 | 9 | impd 447 |
. . . . . . 7
|
| 11 | 10 | rexlimdvw 3034 |
. . . . . 6
|
| 12 | 7, 11 | syl5 34 |
. . . . 5
|
| 13 | 12 | adantr 481 |
. . . 4
|
| 14 | 6, 13 | mpan2d 710 |
. . 3
|
| 15 | 14 | ralrimdva 2969 |
. 2
|
| 16 | 5, 15 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: rexxfrd 4881 ralxfr2d 4882 ralxfr 4886 islindf4 20177 cmpfi 21211 rlimcnp 24692 ispisys2 30216 glbconN 34663 mapdordlem2 36926 |
| Copyright terms: Public domain | W3C validator |