| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an31 | Structured version Visualization version Unicode version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
| Ref | Expression |
|---|---|
| an31 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an13 840 |
. 2
| |
| 2 | anass 681 |
. 2
| |
| 3 | anass 681 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: euind 3393 reuind 3411 dchrelbas3 24963 lhpexle3 35298 4an31 38704 abciffcbatnabciffncba 41096 |
| Copyright terms: Public domain | W3C validator |