| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euind | Structured version Visualization version Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
| Ref | Expression |
|---|---|
| euind.1 |
|
| euind.2 |
|
| euind.3 |
|
| Ref | Expression |
|---|---|
| euind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euind.2 |
. . . . . 6
| |
| 2 | 1 | cbvexv 2275 |
. . . . 5
|
| 3 | euind.1 |
. . . . . . . . 9
| |
| 4 | 3 | isseti 3209 |
. . . . . . . 8
|
| 5 | 4 | biantrur 527 |
. . . . . . 7
|
| 6 | 5 | exbii 1774 |
. . . . . 6
|
| 7 | 19.41v 1914 |
. . . . . . 7
| |
| 8 | 7 | exbii 1774 |
. . . . . 6
|
| 9 | excom 2042 |
. . . . . 6
| |
| 10 | 6, 8, 9 | 3bitr2i 288 |
. . . . 5
|
| 11 | 2, 10 | bitri 264 |
. . . 4
|
| 12 | eqeq2 2633 |
. . . . . . . . 9
| |
| 13 | 12 | imim2i 16 |
. . . . . . . 8
|
| 14 | biimpr 210 |
. . . . . . . . . 10
| |
| 15 | 14 | imim2i 16 |
. . . . . . . . 9
|
| 16 | an31 841 |
. . . . . . . . . . 11
| |
| 17 | 16 | imbi1i 339 |
. . . . . . . . . 10
|
| 18 | impexp 462 |
. . . . . . . . . 10
| |
| 19 | impexp 462 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | 3bitr3i 290 |
. . . . . . . . 9
|
| 21 | 15, 20 | sylib 208 |
. . . . . . . 8
|
| 22 | 13, 21 | syl 17 |
. . . . . . 7
|
| 23 | 22 | 2alimi 1740 |
. . . . . 6
|
| 24 | 19.23v 1902 |
. . . . . . . 8
| |
| 25 | 24 | albii 1747 |
. . . . . . 7
|
| 26 | 19.21v 1868 |
. . . . . . 7
| |
| 27 | 25, 26 | bitri 264 |
. . . . . 6
|
| 28 | 23, 27 | sylib 208 |
. . . . 5
|
| 29 | 28 | eximdv 1846 |
. . . 4
|
| 30 | 11, 29 | syl5bi 232 |
. . 3
|
| 31 | 30 | imp 445 |
. 2
|
| 32 | pm4.24 675 |
. . . . . . . . 9
| |
| 33 | 32 | biimpi 206 |
. . . . . . . 8
|
| 34 | prth 595 |
. . . . . . . 8
| |
| 35 | eqtr3 2643 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | syl56 36 |
. . . . . . 7
|
| 37 | 36 | alanimi 1744 |
. . . . . 6
|
| 38 | 19.23v 1902 |
. . . . . 6
| |
| 39 | 37, 38 | sylib 208 |
. . . . 5
|
| 40 | 39 | com12 32 |
. . . 4
|
| 41 | 40 | alrimivv 1856 |
. . 3
|
| 42 | 41 | adantl 482 |
. 2
|
| 43 | eqeq1 2626 |
. . . . 5
| |
| 44 | 43 | imbi2d 330 |
. . . 4
|
| 45 | 44 | albidv 1849 |
. . 3
|
| 46 | 45 | eu4 2518 |
. 2
|
| 47 | 31, 42, 46 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |