| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuind | Structured version Visualization version Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
| Ref | Expression |
|---|---|
| reuind.1 |
|
| reuind.2 |
|
| Ref | Expression |
|---|---|
| reuind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuind.2 |
. . . . . . . 8
| |
| 2 | 1 | eleq1d 2686 |
. . . . . . 7
|
| 3 | reuind.1 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 747 |
. . . . . 6
|
| 5 | 4 | cbvexv 2275 |
. . . . 5
|
| 6 | r19.41v 3089 |
. . . . . . 7
| |
| 7 | 6 | exbii 1774 |
. . . . . 6
|
| 8 | rexcom4 3225 |
. . . . . 6
| |
| 9 | risset 3062 |
. . . . . . . 8
| |
| 10 | 9 | anbi1i 731 |
. . . . . . 7
|
| 11 | 10 | exbii 1774 |
. . . . . 6
|
| 12 | 7, 8, 11 | 3bitr4ri 293 |
. . . . 5
|
| 13 | 5, 12 | bitri 264 |
. . . 4
|
| 14 | eqeq2 2633 |
. . . . . . . . . 10
| |
| 15 | 14 | imim2i 16 |
. . . . . . . . 9
|
| 16 | biimpr 210 |
. . . . . . . . . . 11
| |
| 17 | 16 | imim2i 16 |
. . . . . . . . . 10
|
| 18 | an31 841 |
. . . . . . . . . . . 12
| |
| 19 | 18 | imbi1i 339 |
. . . . . . . . . . 11
|
| 20 | impexp 462 |
. . . . . . . . . . 11
| |
| 21 | impexp 462 |
. . . . . . . . . . 11
| |
| 22 | 19, 20, 21 | 3bitr3i 290 |
. . . . . . . . . 10
|
| 23 | 17, 22 | sylib 208 |
. . . . . . . . 9
|
| 24 | 15, 23 | syl 17 |
. . . . . . . 8
|
| 25 | 24 | 2alimi 1740 |
. . . . . . 7
|
| 26 | 19.23v 1902 |
. . . . . . . . . 10
| |
| 27 | an12 838 |
. . . . . . . . . . . . . 14
| |
| 28 | eleq1 2689 |
. . . . . . . . . . . . . . . 16
| |
| 29 | 28 | adantr 481 |
. . . . . . . . . . . . . . 15
|
| 30 | 29 | pm5.32ri 670 |
. . . . . . . . . . . . . 14
|
| 31 | 27, 30 | bitr4i 267 |
. . . . . . . . . . . . 13
|
| 32 | 31 | exbii 1774 |
. . . . . . . . . . . 12
|
| 33 | 19.42v 1918 |
. . . . . . . . . . . 12
| |
| 34 | 32, 33 | bitri 264 |
. . . . . . . . . . 11
|
| 35 | 34 | imbi1i 339 |
. . . . . . . . . 10
|
| 36 | 26, 35 | bitri 264 |
. . . . . . . . 9
|
| 37 | 36 | albii 1747 |
. . . . . . . 8
|
| 38 | 19.21v 1868 |
. . . . . . . 8
| |
| 39 | 37, 38 | bitri 264 |
. . . . . . 7
|
| 40 | 25, 39 | sylib 208 |
. . . . . 6
|
| 41 | 40 | expd 452 |
. . . . 5
|
| 42 | 41 | reximdvai 3015 |
. . . 4
|
| 43 | 13, 42 | syl5bi 232 |
. . 3
|
| 44 | 43 | imp 445 |
. 2
|
| 45 | pm4.24 675 |
. . . . . . . . . 10
| |
| 46 | 45 | biimpi 206 |
. . . . . . . . 9
|
| 47 | prth 595 |
. . . . . . . . 9
| |
| 48 | eqtr3 2643 |
. . . . . . . . 9
| |
| 49 | 46, 47, 48 | syl56 36 |
. . . . . . . 8
|
| 50 | 49 | alanimi 1744 |
. . . . . . 7
|
| 51 | 19.23v 1902 |
. . . . . . 7
| |
| 52 | 50, 51 | sylib 208 |
. . . . . 6
|
| 53 | 52 | com12 32 |
. . . . 5
|
| 54 | 53 | a1d 25 |
. . . 4
|
| 55 | 54 | ralrimivv 2970 |
. . 3
|
| 56 | 55 | adantl 482 |
. 2
|
| 57 | eqeq1 2626 |
. . . . 5
| |
| 58 | 57 | imbi2d 330 |
. . . 4
|
| 59 | 58 | albidv 1849 |
. . 3
|
| 60 | 59 | reu4 3400 |
. 2
|
| 61 | 44, 56, 60 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |