Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3 Structured version   Visualization version   Unicode version

Theorem lhpexle3 35298
Description: There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l  |-  .<_  =  ( le `  K )
lhpex1.a  |-  A  =  ( Atoms `  K )
lhpex1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpexle3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
Distinct variable groups:    .<_ , p    A, p    H, p    K, p    W, p    X, p    Y, p    Z, p

Proof of Theorem lhpexle3
StepHypRef Expression
1 lhpex1.l . . . . 5  |-  .<_  =  ( le `  K )
2 lhpex1.a . . . . 5  |-  A  =  ( Atoms `  K )
3 lhpex1.h . . . . 5  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexle2 35296 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y ) )
5 3anass 1042 . . . . 5  |-  ( ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y )  <->  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y ) ) )
65rexbii 3041 . . . 4  |-  ( E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Y )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y ) ) )
74, 6sylib 208 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y
) ) )
81, 2, 3lhpexle2 35296 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )
98adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/= 
X  /\  p  =/=  Z ) )
10 3anass 1042 . . . . . . 7  |-  ( ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z )  <->  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z ) ) )
1110rexbii 3041 . . . . . 6  |-  ( E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z ) ) )
129, 11sylib 208 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z ) ) )
131, 2, 3lhpexle2 35296 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  Y  /\  p  =/=  Z ) )
14 3anass 1042 . . . . . . . . . . 11  |-  ( ( p  .<_  W  /\  p  =/=  Y  /\  p  =/=  Z )  <->  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z ) ) )
1514rexbii 3041 . . . . . . . . . 10  |-  ( E. p  e.  A  ( p  .<_  W  /\  p  =/=  Y  /\  p  =/=  Z )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z ) ) )
1613, 15sylib 208 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
) ) )
17163ad2ant1 1082 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
) ) )
18 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
19 simpl3l 1116 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  Y  e.  A )
20 simpl2l 1114 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  Z  e.  A )
21 simprl 794 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  X  e.  A )
22 simpl3r 1117 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  Y  .<_  W )
23 simpl2r 1115 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  Z  .<_  W )
24 simprr 796 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  X  .<_  W )
251, 2, 3lhpexle3lem 35297 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Y  e.  A  /\  Z  e.  A  /\  X  e.  A )  /\  ( Y  .<_  W  /\  Z  .<_  W  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z  /\  p  =/= 
X ) ) )
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1349 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z  /\  p  =/=  X
) ) )
27 df-3an 1039 . . . . . . . . . . . 12  |-  ( ( p  =/=  Y  /\  p  =/=  Z  /\  p  =/=  X )  <->  ( (
p  =/=  Y  /\  p  =/=  Z )  /\  p  =/=  X ) )
2827anbi2i 730 . . . . . . . . . . 11  |-  ( ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z  /\  p  =/=  X
) )  <->  ( p  .<_  W  /\  ( ( p  =/=  Y  /\  p  =/=  Z )  /\  p  =/=  X ) ) )
29 3anass 1042 . . . . . . . . . . 11  |-  ( ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
)  /\  p  =/=  X )  <->  ( p  .<_  W  /\  ( ( p  =/=  Y  /\  p  =/=  Z )  /\  p  =/=  X ) ) )
3028, 29bitr4i 267 . . . . . . . . . 10  |-  ( ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z  /\  p  =/=  X
) )  <->  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z )  /\  p  =/=  X ) )
3130rexbii 3041 . . . . . . . . 9  |-  ( E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z  /\  p  =/=  X
) )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z )  /\  p  =/=  X ) )
3226, 31sylib 208 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
)  /\  p  =/=  X ) )
3317, 32lhpexle1lem 35293 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
)  /\  p  =/=  X ) )
34 an31 841 . . . . . . . . . 10  |-  ( ( ( p  =/=  Y  /\  p  =/=  Z
)  /\  p  =/=  X )  <->  ( ( p  =/=  X  /\  p  =/=  Z )  /\  p  =/=  Y ) )
3534anbi2i 730 . . . . . . . . 9  |-  ( ( p  .<_  W  /\  ( ( p  =/= 
Y  /\  p  =/=  Z )  /\  p  =/= 
X ) )  <->  ( p  .<_  W  /\  ( ( p  =/=  X  /\  p  =/=  Z )  /\  p  =/=  Y ) ) )
36 3anass 1042 . . . . . . . . 9  |-  ( ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z
)  /\  p  =/=  Y )  <->  ( p  .<_  W  /\  ( ( p  =/=  X  /\  p  =/=  Z )  /\  p  =/=  Y ) ) )
3735, 29, 363bitr4i 292 . . . . . . . 8  |-  ( ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
)  /\  p  =/=  X )  <->  ( p  .<_  W  /\  ( p  =/= 
X  /\  p  =/=  Z )  /\  p  =/= 
Y ) )
3837rexbii 3041 . . . . . . 7  |-  ( E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  Y  /\  p  =/=  Z
)  /\  p  =/=  X )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z
)  /\  p  =/=  Y ) )
3933, 38sylib 208 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z
)  /\  p  =/=  Y ) )
40393expa 1265 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W ) )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z )  /\  p  =/=  Y ) )
4112, 40lhpexle1lem 35293 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z )  /\  p  =/=  Y ) )
42 an32 839 . . . . . . 7  |-  ( ( ( p  =/=  X  /\  p  =/=  Z
)  /\  p  =/=  Y )  <->  ( ( p  =/=  X  /\  p  =/=  Y )  /\  p  =/=  Z ) )
4342anbi2i 730 . . . . . 6  |-  ( ( p  .<_  W  /\  ( ( p  =/= 
X  /\  p  =/=  Z )  /\  p  =/= 
Y ) )  <->  ( p  .<_  W  /\  ( ( p  =/=  X  /\  p  =/=  Y )  /\  p  =/=  Z ) ) )
44 3anass 1042 . . . . . 6  |-  ( ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y
)  /\  p  =/=  Z )  <->  ( p  .<_  W  /\  ( ( p  =/=  X  /\  p  =/=  Y )  /\  p  =/=  Z ) ) )
4543, 36, 443bitr4i 292 . . . . 5  |-  ( ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z
)  /\  p  =/=  Y )  <->  ( p  .<_  W  /\  ( p  =/= 
X  /\  p  =/=  Y )  /\  p  =/= 
Z ) )
4645rexbii 3041 . . . 4  |-  ( E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Z
)  /\  p  =/=  Y )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y
)  /\  p  =/=  Z ) )
4741, 46sylib 208 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Z  e.  A  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y )  /\  p  =/=  Z ) )
487, 47lhpexle1lem 35293 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y
)  /\  p  =/=  Z ) )
49 df-3an 1039 . . . . 5  |-  ( ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z )  <->  ( (
p  =/=  X  /\  p  =/=  Y )  /\  p  =/=  Z ) )
5049anbi2i 730 . . . 4  |-  ( ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) )  <->  ( p  .<_  W  /\  ( ( p  =/=  X  /\  p  =/=  Y )  /\  p  =/=  Z ) ) )
5144, 50bitr4i 267 . . 3  |-  ( ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y
)  /\  p  =/=  Z )  <->  ( p  .<_  W  /\  ( p  =/= 
X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
5251rexbii 3041 . 2  |-  ( E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y
)  /\  p  =/=  Z )  <->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
5348, 52sylib 208 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888   lecple 15948   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  cdlemftr3  35853
  Copyright terms: Public domain W3C validator