| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabs5 | Structured version Visualization version Unicode version | ||
| Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
| Ref | Expression |
|---|---|
| anabs5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 525 |
. . 3
| |
| 2 | 1 | bicomd 213 |
. 2
|
| 3 | 2 | pm5.32i 669 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: axrep5 4776 axsep2 4782 bj-axrep5 32792 elinintrab 37883 2sb5nd 38776 eelTT1 38935 uun121 39010 uunTT1 39020 uunTT1p1 39021 uunTT1p2 39022 uun111 39032 uun2221 39040 uun2221p1 39041 uun2221p2 39042 2sb5ndVD 39146 2sb5ndALT 39168 |
| Copyright terms: Public domain | W3C validator |