MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Structured version   Visualization version   Unicode version

Theorem anabs5 851
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5  |-  ( (
ph  /\  ( ph  /\ 
ps ) )  <->  ( ph  /\ 
ps ) )

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 525 . . 3  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
21bicomd 213 . 2  |-  ( ph  ->  ( ( ph  /\  ps )  <->  ps ) )
32pm5.32i 669 1  |-  ( (
ph  /\  ( ph  /\ 
ps ) )  <->  ( ph  /\ 
ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  axrep5  4776  axsep2  4782  bj-axrep5  32792  elinintrab  37883  2sb5nd  38776  eelTT1  38935  uun121  39010  uunTT1  39020  uunTT1p1  39021  uunTT1p2  39022  uun111  39032  uun2221  39040  uun2221p1  39041  uun2221p2  39042  2sb5ndVD  39146  2sb5ndALT  39168
  Copyright terms: Public domain W3C validator