Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  andi3or Structured version   Visualization version   Unicode version

Theorem andi3or 38320
Description: Distribute over triple disjunction. (Contributed by RP, 5-Jul-2021.)
Assertion
Ref Expression
andi3or  |-  ( (
ph  /\  ( ps  \/  ch  \/  th )
)  <->  ( ( ph  /\ 
ps )  \/  ( ph  /\  ch )  \/  ( ph  /\  th ) ) )

Proof of Theorem andi3or
StepHypRef Expression
1 andi 911 . . 3  |-  ( (
ph  /\  ( ( ps  \/  ch )  \/ 
th ) )  <->  ( ( ph  /\  ( ps  \/  ch ) )  \/  ( ph  /\  th ) ) )
2 andi 911 . . . 4  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
32orbi1i 542 . . 3  |-  ( ( ( ph  /\  ( ps  \/  ch ) )  \/  ( ph  /\  th ) )  <->  ( (
( ph  /\  ps )  \/  ( ph  /\  ch ) )  \/  ( ph  /\  th ) ) )
41, 3bitri 264 . 2  |-  ( (
ph  /\  ( ( ps  \/  ch )  \/ 
th ) )  <->  ( (
( ph  /\  ps )  \/  ( ph  /\  ch ) )  \/  ( ph  /\  th ) ) )
5 df-3or 1038 . . 3  |-  ( ( ps  \/  ch  \/  th )  <->  ( ( ps  \/  ch )  \/ 
th ) )
65anbi2i 730 . 2  |-  ( (
ph  /\  ( ps  \/  ch  \/  th )
)  <->  ( ph  /\  ( ( ps  \/  ch )  \/  th )
) )
7 df-3or 1038 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
ch )  \/  ( ph  /\  th ) )  <-> 
( ( ( ph  /\ 
ps )  \/  ( ph  /\  ch ) )  \/  ( ph  /\  th ) ) )
84, 6, 73bitr4i 292 1  |-  ( (
ph  /\  ( ps  \/  ch  \/  th )
)  <->  ( ( ph  /\ 
ps )  \/  ( ph  /\  ch )  \/  ( ph  /\  th ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038
This theorem is referenced by:  uneqsn  38321
  Copyright terms: Public domain W3C validator