Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  or3or Structured version   Visualization version   Unicode version

Theorem or3or 38319
Description: Decompose disjunction into three cases. (Contributed by RP, 5-Jul-2021.)
Assertion
Ref Expression
or3or  |-  ( (
ph  \/  ps )  <->  ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps )  \/  ( -.  ph  /\  ps )
) )

Proof of Theorem or3or
StepHypRef Expression
1 excxor 1469 . . 3  |-  ( (
ph  \/_  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps )
) )
21orbi2i 541 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ph  \/_ 
ps ) )  <->  ( ( ph  /\  ps )  \/  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps )
) ) )
3 orc 400 . . . 4  |-  ( ph  ->  ( ph  \/  ps ) )
4 exmid 431 . . . . 5  |-  ( ps  \/  -.  ps )
5 pm3.2 463 . . . . . 6  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
6 biimp 205 . . . . . . . . . 10  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
7 iman 440 . . . . . . . . . 10  |-  ( (
ph  ->  ps )  <->  -.  ( ph  /\  -.  ps )
)
86, 7sylib 208 . . . . . . . . 9  |-  ( (
ph 
<->  ps )  ->  -.  ( ph  /\  -.  ps ) )
98con2i 134 . . . . . . . 8  |-  ( (
ph  /\  -.  ps )  ->  -.  ( ph  <->  ps )
)
109ex 450 . . . . . . 7  |-  ( ph  ->  ( -.  ps  ->  -.  ( ph  <->  ps )
) )
11 df-xor 1465 . . . . . . . 8  |-  ( (
ph  \/_  ps )  <->  -.  ( ph  <->  ps )
)
1211bicomi 214 . . . . . . 7  |-  ( -.  ( ph  <->  ps )  <->  (
ph  \/_  ps )
)
1310, 12syl6ib 241 . . . . . 6  |-  ( ph  ->  ( -.  ps  ->  (
ph  \/_  ps )
) )
145, 13orim12d 883 . . . . 5  |-  ( ph  ->  ( ( ps  \/  -.  ps )  ->  (
( ph  /\  ps )  \/  ( ph  \/_  ps ) ) ) )
154, 14mpi 20 . . . 4  |-  ( ph  ->  ( ( ph  /\  ps )  \/  ( ph  \/_  ps ) ) )
163, 152thd 255 . . 3  |-  ( ph  ->  ( ( ph  \/  ps )  <->  ( ( ph  /\ 
ps )  \/  ( ph  \/_  ps ) ) ) )
17 bicom 212 . . . . . . 7  |-  ( (
ph 
<->  ps )  <->  ( ps  <->  ph ) )
18 bibif 361 . . . . . . 7  |-  ( -. 
ph  ->  ( ( ps  <->  ph )  <->  -.  ps )
)
1917, 18syl5bb 272 . . . . . 6  |-  ( -. 
ph  ->  ( ( ph  <->  ps )  <->  -.  ps )
)
2019con2bid 344 . . . . 5  |-  ( -. 
ph  ->  ( ps  <->  -.  ( ph 
<->  ps ) ) )
2120, 12syl6bb 276 . . . 4  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/_ 
ps ) ) )
22 biorf 420 . . . 4  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
23 simpl 473 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
2423con3i 150 . . . . 5  |-  ( -. 
ph  ->  -.  ( ph  /\ 
ps ) )
25 biorf 420 . . . . 5  |-  ( -.  ( ph  /\  ps )  ->  ( ( ph  \/_ 
ps )  <->  ( ( ph  /\  ps )  \/  ( ph  \/_  ps ) ) ) )
2624, 25syl 17 . . . 4  |-  ( -. 
ph  ->  ( ( ph  \/_ 
ps )  <->  ( ( ph  /\  ps )  \/  ( ph  \/_  ps ) ) ) )
2721, 22, 263bitr3d 298 . . 3  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  <->  ( ( ph  /\  ps )  \/  ( ph  \/_  ps ) ) ) )
2816, 27pm2.61i 176 . 2  |-  ( (
ph  \/  ps )  <->  ( ( ph  /\  ps )  \/  ( ph  \/_ 
ps ) ) )
29 3orass 1040 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps )  \/  ( -.  ph  /\  ps )
)  <->  ( ( ph  /\ 
ps )  \/  (
( ph  /\  -.  ps )  \/  ( -.  ph 
/\  ps ) ) ) )
302, 28, 293bitr4i 292 1  |-  ( (
ph  \/  ps )  <->  ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps )  \/  ( -.  ph  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    \/_ wxo 1464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-xor 1465
This theorem is referenced by:  uneqsn  38321
  Copyright terms: Public domain W3C validator