| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uneqsn | Structured version Visualization version Unicode version | ||
| Description: If a union of classes is equal to a singleton then at least one class is equal to the singleton while the other may be equal to the empty set. (Contributed by RP, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| uneqsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3618 |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | unss 3787 |
. . . . . 6
| |
| 4 | 3 | bicomi 214 |
. . . . 5
|
| 5 | 4 | a1i 11 |
. . . 4
|
| 6 | elun 3753 |
. . . . . 6
| |
| 7 | snssg 4327 |
. . . . . . 7
| |
| 8 | snssg 4327 |
. . . . . . 7
| |
| 9 | 7, 8 | orbi12d 746 |
. . . . . 6
|
| 10 | 6, 9 | syl5rbb 273 |
. . . . 5
|
| 11 | snssg 4327 |
. . . . 5
| |
| 12 | 10, 11 | bitr2d 269 |
. . . 4
|
| 13 | 5, 12 | anbi12d 747 |
. . 3
|
| 14 | or3or 38319 |
. . . . . 6
| |
| 15 | 14 | anbi2i 730 |
. . . . 5
|
| 16 | andi3or 38320 |
. . . . 5
| |
| 17 | 15, 16 | bitri 264 |
. . . 4
|
| 18 | an4 865 |
. . . . . . 7
| |
| 19 | eqss 3618 |
. . . . . . . . 9
| |
| 20 | eqss 3618 |
. . . . . . . . 9
| |
| 21 | 19, 20 | anbi12i 733 |
. . . . . . . 8
|
| 22 | 21 | bicomi 214 |
. . . . . . 7
|
| 23 | 18, 22 | bitri 264 |
. . . . . 6
|
| 24 | 23 | a1i 11 |
. . . . 5
|
| 25 | an4 865 |
. . . . . 6
| |
| 26 | 19 | bicomi 214 |
. . . . . . . 8
|
| 27 | 26 | a1i 11 |
. . . . . . 7
|
| 28 | sssn 4358 |
. . . . . . . . . 10
| |
| 29 | 28 | a1i 11 |
. . . . . . . . 9
|
| 30 | 29 | anbi1d 741 |
. . . . . . . 8
|
| 31 | andir 912 |
. . . . . . . . 9
| |
| 32 | n0i 3920 |
. . . . . . . . . . . . 13
| |
| 33 | 8, 32 | syl6bir 244 |
. . . . . . . . . . . 12
|
| 34 | 33 | con2d 129 |
. . . . . . . . . . 11
|
| 35 | 34 | pm4.71d 666 |
. . . . . . . . . 10
|
| 36 | eqimss2 3658 |
. . . . . . . . . . . 12
| |
| 37 | iman 440 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | mpbi 220 |
. . . . . . . . . . 11
|
| 39 | 38 | biorfi 422 |
. . . . . . . . . 10
|
| 40 | 35, 39 | syl6rbb 277 |
. . . . . . . . 9
|
| 41 | 31, 40 | syl5bb 272 |
. . . . . . . 8
|
| 42 | 30, 41 | bitrd 268 |
. . . . . . 7
|
| 43 | 27, 42 | anbi12d 747 |
. . . . . 6
|
| 44 | 25, 43 | syl5bb 272 |
. . . . 5
|
| 45 | an4 865 |
. . . . . 6
| |
| 46 | sssn 4358 |
. . . . . . . . . 10
| |
| 47 | 46 | a1i 11 |
. . . . . . . . 9
|
| 48 | 47 | anbi1d 741 |
. . . . . . . 8
|
| 49 | andir 912 |
. . . . . . . . 9
| |
| 50 | n0i 3920 |
. . . . . . . . . . . . 13
| |
| 51 | 7, 50 | syl6bir 244 |
. . . . . . . . . . . 12
|
| 52 | 51 | con2d 129 |
. . . . . . . . . . 11
|
| 53 | 52 | pm4.71d 666 |
. . . . . . . . . 10
|
| 54 | eqimss2 3658 |
. . . . . . . . . . . 12
| |
| 55 | iman 440 |
. . . . . . . . . . . 12
| |
| 56 | 54, 55 | mpbi 220 |
. . . . . . . . . . 11
|
| 57 | 56 | biorfi 422 |
. . . . . . . . . 10
|
| 58 | 53, 57 | syl6rbb 277 |
. . . . . . . . 9
|
| 59 | 49, 58 | syl5bb 272 |
. . . . . . . 8
|
| 60 | 48, 59 | bitrd 268 |
. . . . . . 7
|
| 61 | 20 | bicomi 214 |
. . . . . . . 8
|
| 62 | 61 | a1i 11 |
. . . . . . 7
|
| 63 | 60, 62 | anbi12d 747 |
. . . . . 6
|
| 64 | 45, 63 | syl5bb 272 |
. . . . 5
|
| 65 | 24, 44, 64 | 3orbi123d 1398 |
. . . 4
|
| 66 | 17, 65 | syl5bb 272 |
. . 3
|
| 67 | 2, 13, 66 | 3bitrd 294 |
. 2
|
| 68 | snprc 4253 |
. . . . 5
| |
| 69 | 68 | biimpi 206 |
. . . 4
|
| 70 | 69 | eqeq2d 2632 |
. . 3
|
| 71 | 69 | eqeq2d 2632 |
. . . . . . . 8
|
| 72 | 69 | eqeq2d 2632 |
. . . . . . . 8
|
| 73 | 71, 72 | anbi12d 747 |
. . . . . . 7
|
| 74 | 71 | anbi1d 741 |
. . . . . . 7
|
| 75 | 73, 74 | orbi12d 746 |
. . . . . 6
|
| 76 | 72 | anbi2d 740 |
. . . . . 6
|
| 77 | 75, 76 | orbi12d 746 |
. . . . 5
|
| 78 | pm4.25 537 |
. . . . . 6
| |
| 79 | 78 | orbi1i 542 |
. . . . . 6
|
| 80 | 78, 79 | bitri 264 |
. . . . 5
|
| 81 | 77, 80 | syl6rbbr 279 |
. . . 4
|
| 82 | un00 4011 |
. . . . 5
| |
| 83 | 82 | bicomi 214 |
. . . 4
|
| 84 | df-3or 1038 |
. . . 4
| |
| 85 | 81, 83, 84 | 3bitr4g 303 |
. . 3
|
| 86 | 70, 85 | bitrd 268 |
. 2
|
| 87 | 67, 86 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-xor 1465 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: clsk1indlem3 38341 |
| Copyright terms: Public domain | W3C validator |