Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uneqsn Structured version   Visualization version   Unicode version

Theorem uneqsn 38321
Description: If a union of classes is equal to a singleton then at least one class is equal to the singleton while the other may be equal to the empty set. (Contributed by RP, 5-Jul-2021.)
Assertion
Ref Expression
uneqsn  |-  ( ( A  u.  B )  =  { C }  <->  ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) )

Proof of Theorem uneqsn
StepHypRef Expression
1 eqss 3618 . . . 4  |-  ( ( A  u.  B )  =  { C }  <->  ( ( A  u.  B
)  C_  { C }  /\  { C }  C_  ( A  u.  B
) ) )
21a1i 11 . . 3  |-  ( C  e.  _V  ->  (
( A  u.  B
)  =  { C } 
<->  ( ( A  u.  B )  C_  { C }  /\  { C }  C_  ( A  u.  B
) ) ) )
3 unss 3787 . . . . . 6  |-  ( ( A  C_  { C }  /\  B  C_  { C } )  <->  ( A  u.  B )  C_  { C } )
43bicomi 214 . . . . 5  |-  ( ( A  u.  B ) 
C_  { C }  <->  ( A  C_  { C }  /\  B  C_  { C } ) )
54a1i 11 . . . 4  |-  ( C  e.  _V  ->  (
( A  u.  B
)  C_  { C } 
<->  ( A  C_  { C }  /\  B  C_  { C } ) ) )
6 elun 3753 . . . . . 6  |-  ( C  e.  ( A  u.  B )  <->  ( C  e.  A  \/  C  e.  B ) )
7 snssg 4327 . . . . . . 7  |-  ( C  e.  _V  ->  ( C  e.  A  <->  { C }  C_  A ) )
8 snssg 4327 . . . . . . 7  |-  ( C  e.  _V  ->  ( C  e.  B  <->  { C }  C_  B ) )
97, 8orbi12d 746 . . . . . 6  |-  ( C  e.  _V  ->  (
( C  e.  A  \/  C  e.  B
)  <->  ( { C }  C_  A  \/  { C }  C_  B ) ) )
106, 9syl5rbb 273 . . . . 5  |-  ( C  e.  _V  ->  (
( { C }  C_  A  \/  { C }  C_  B )  <->  C  e.  ( A  u.  B
) ) )
11 snssg 4327 . . . . 5  |-  ( C  e.  _V  ->  ( C  e.  ( A  u.  B )  <->  { C }  C_  ( A  u.  B ) ) )
1210, 11bitr2d 269 . . . 4  |-  ( C  e.  _V  ->  ( { C }  C_  ( A  u.  B )  <->  ( { C }  C_  A  \/  { C }  C_  B ) ) )
135, 12anbi12d 747 . . 3  |-  ( C  e.  _V  ->  (
( ( A  u.  B )  C_  { C }  /\  { C }  C_  ( A  u.  B
) )  <->  ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  \/  { C }  C_  B ) ) ) )
14 or3or 38319 . . . . . 6  |-  ( ( { C }  C_  A  \/  { C }  C_  B )  <->  ( ( { C }  C_  A  /\  { C }  C_  B )  \/  ( { C }  C_  A  /\  -.  { C }  C_  B )  \/  ( -.  { C }  C_  A  /\  { C }  C_  B ) ) )
1514anbi2i 730 . . . . 5  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  \/  { C }  C_  B ) )  <->  ( ( A  C_  { C }  /\  B  C_  { C } )  /\  (
( { C }  C_  A  /\  { C }  C_  B )  \/  ( { C }  C_  A  /\  -.  { C }  C_  B )  \/  ( -.  { C }  C_  A  /\  { C }  C_  B
) ) ) )
16 andi3or 38320 . . . . 5  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  (
( { C }  C_  A  /\  { C }  C_  B )  \/  ( { C }  C_  A  /\  -.  { C }  C_  B )  \/  ( -.  { C }  C_  A  /\  { C }  C_  B
) ) )  <->  ( (
( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  /\  { C }  C_  B ) )  \/  ( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( { C }  C_  A  /\  -.  { C }  C_  B
) )  \/  (
( A  C_  { C }  /\  B  C_  { C } )  /\  ( -.  { C }  C_  A  /\  { C }  C_  B ) ) ) )
1715, 16bitri 264 . . . 4  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  \/  { C }  C_  B ) )  <->  ( (
( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  /\  { C }  C_  B ) )  \/  ( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( { C }  C_  A  /\  -.  { C }  C_  B
) )  \/  (
( A  C_  { C }  /\  B  C_  { C } )  /\  ( -.  { C }  C_  A  /\  { C }  C_  B ) ) ) )
18 an4 865 . . . . . . 7  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  /\  { C }  C_  B ) )  <->  ( ( A  C_  { C }  /\  { C }  C_  A )  /\  ( B  C_  { C }  /\  { C }  C_  B ) ) )
19 eqss 3618 . . . . . . . . 9  |-  ( A  =  { C }  <->  ( A  C_  { C }  /\  { C }  C_  A ) )
20 eqss 3618 . . . . . . . . 9  |-  ( B  =  { C }  <->  ( B  C_  { C }  /\  { C }  C_  B ) )
2119, 20anbi12i 733 . . . . . . . 8  |-  ( ( A  =  { C }  /\  B  =  { C } )  <->  ( ( A  C_  { C }  /\  { C }  C_  A )  /\  ( B  C_  { C }  /\  { C }  C_  B ) ) )
2221bicomi 214 . . . . . . 7  |-  ( ( ( A  C_  { C }  /\  { C }  C_  A )  /\  ( B  C_  { C }  /\  { C }  C_  B ) )  <->  ( A  =  { C }  /\  B  =  { C } ) )
2318, 22bitri 264 . . . . . 6  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  /\  { C }  C_  B ) )  <->  ( A  =  { C }  /\  B  =  { C } ) )
2423a1i 11 . . . . 5  |-  ( C  e.  _V  ->  (
( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( { C }  C_  A  /\  { C }  C_  B ) )  <->  ( A  =  { C }  /\  B  =  { C } ) ) )
25 an4 865 . . . . . 6  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  /\  -.  { C }  C_  B ) )  <->  ( ( A  C_  { C }  /\  { C }  C_  A )  /\  ( B  C_  { C }  /\  -.  { C }  C_  B ) ) )
2619bicomi 214 . . . . . . . 8  |-  ( ( A  C_  { C }  /\  { C }  C_  A )  <->  A  =  { C } )
2726a1i 11 . . . . . . 7  |-  ( C  e.  _V  ->  (
( A  C_  { C }  /\  { C }  C_  A )  <->  A  =  { C } ) )
28 sssn 4358 . . . . . . . . . 10  |-  ( B 
C_  { C }  <->  ( B  =  (/)  \/  B  =  { C } ) )
2928a1i 11 . . . . . . . . 9  |-  ( C  e.  _V  ->  ( B  C_  { C }  <->  ( B  =  (/)  \/  B  =  { C } ) ) )
3029anbi1d 741 . . . . . . . 8  |-  ( C  e.  _V  ->  (
( B  C_  { C }  /\  -.  { C }  C_  B )  <->  ( ( B  =  (/)  \/  B  =  { C } )  /\  -.  { C }  C_  B ) ) )
31 andir 912 . . . . . . . . 9  |-  ( ( ( B  =  (/)  \/  B  =  { C } )  /\  -.  { C }  C_  B
)  <->  ( ( B  =  (/)  /\  -.  { C }  C_  B )  \/  ( B  =  { C }  /\  -.  { C }  C_  B ) ) )
32 n0i 3920 . . . . . . . . . . . . 13  |-  ( C  e.  B  ->  -.  B  =  (/) )
338, 32syl6bir 244 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  ( { C }  C_  B  ->  -.  B  =  (/) ) )
3433con2d 129 . . . . . . . . . . 11  |-  ( C  e.  _V  ->  ( B  =  (/)  ->  -.  { C }  C_  B
) )
3534pm4.71d 666 . . . . . . . . . 10  |-  ( C  e.  _V  ->  ( B  =  (/)  <->  ( B  =  (/)  /\  -.  { C }  C_  B ) ) )
36 eqimss2 3658 . . . . . . . . . . . 12  |-  ( B  =  { C }  ->  { C }  C_  B )
37 iman 440 . . . . . . . . . . . 12  |-  ( ( B  =  { C }  ->  { C }  C_  B )  <->  -.  ( B  =  { C }  /\  -.  { C }  C_  B ) )
3836, 37mpbi 220 . . . . . . . . . . 11  |-  -.  ( B  =  { C }  /\  -.  { C }  C_  B )
3938biorfi 422 . . . . . . . . . 10  |-  ( ( B  =  (/)  /\  -.  { C }  C_  B
)  <->  ( ( B  =  (/)  /\  -.  { C }  C_  B )  \/  ( B  =  { C }  /\  -.  { C }  C_  B ) ) )
4035, 39syl6rbb 277 . . . . . . . . 9  |-  ( C  e.  _V  ->  (
( ( B  =  (/)  /\  -.  { C }  C_  B )  \/  ( B  =  { C }  /\  -.  { C }  C_  B ) )  <->  B  =  (/) ) )
4131, 40syl5bb 272 . . . . . . . 8  |-  ( C  e.  _V  ->  (
( ( B  =  (/)  \/  B  =  { C } )  /\  -.  { C }  C_  B
)  <->  B  =  (/) ) )
4230, 41bitrd 268 . . . . . . 7  |-  ( C  e.  _V  ->  (
( B  C_  { C }  /\  -.  { C }  C_  B )  <->  B  =  (/) ) )
4327, 42anbi12d 747 . . . . . 6  |-  ( C  e.  _V  ->  (
( ( A  C_  { C }  /\  { C }  C_  A )  /\  ( B  C_  { C }  /\  -.  { C }  C_  B
) )  <->  ( A  =  { C }  /\  B  =  (/) ) ) )
4425, 43syl5bb 272 . . . . 5  |-  ( C  e.  _V  ->  (
( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( { C }  C_  A  /\  -.  { C }  C_  B
) )  <->  ( A  =  { C }  /\  B  =  (/) ) ) )
45 an4 865 . . . . . 6  |-  ( ( ( A  C_  { C }  /\  B  C_  { C } )  /\  ( -.  { C }  C_  A  /\  { C }  C_  B ) )  <->  ( ( A  C_  { C }  /\  -.  { C }  C_  A )  /\  ( B  C_  { C }  /\  { C }  C_  B ) ) )
46 sssn 4358 . . . . . . . . . 10  |-  ( A 
C_  { C }  <->  ( A  =  (/)  \/  A  =  { C } ) )
4746a1i 11 . . . . . . . . 9  |-  ( C  e.  _V  ->  ( A  C_  { C }  <->  ( A  =  (/)  \/  A  =  { C } ) ) )
4847anbi1d 741 . . . . . . . 8  |-  ( C  e.  _V  ->  (
( A  C_  { C }  /\  -.  { C }  C_  A )  <->  ( ( A  =  (/)  \/  A  =  { C } )  /\  -.  { C }  C_  A ) ) )
49 andir 912 . . . . . . . . 9  |-  ( ( ( A  =  (/)  \/  A  =  { C } )  /\  -.  { C }  C_  A
)  <->  ( ( A  =  (/)  /\  -.  { C }  C_  A )  \/  ( A  =  { C }  /\  -.  { C }  C_  A ) ) )
50 n0i 3920 . . . . . . . . . . . . 13  |-  ( C  e.  A  ->  -.  A  =  (/) )
517, 50syl6bir 244 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  ( { C }  C_  A  ->  -.  A  =  (/) ) )
5251con2d 129 . . . . . . . . . . 11  |-  ( C  e.  _V  ->  ( A  =  (/)  ->  -.  { C }  C_  A
) )
5352pm4.71d 666 . . . . . . . . . 10  |-  ( C  e.  _V  ->  ( A  =  (/)  <->  ( A  =  (/)  /\  -.  { C }  C_  A ) ) )
54 eqimss2 3658 . . . . . . . . . . . 12  |-  ( A  =  { C }  ->  { C }  C_  A )
55 iman 440 . . . . . . . . . . . 12  |-  ( ( A  =  { C }  ->  { C }  C_  A )  <->  -.  ( A  =  { C }  /\  -.  { C }  C_  A ) )
5654, 55mpbi 220 . . . . . . . . . . 11  |-  -.  ( A  =  { C }  /\  -.  { C }  C_  A )
5756biorfi 422 . . . . . . . . . 10  |-  ( ( A  =  (/)  /\  -.  { C }  C_  A
)  <->  ( ( A  =  (/)  /\  -.  { C }  C_  A )  \/  ( A  =  { C }  /\  -.  { C }  C_  A ) ) )
5853, 57syl6rbb 277 . . . . . . . . 9  |-  ( C  e.  _V  ->  (
( ( A  =  (/)  /\  -.  { C }  C_  A )  \/  ( A  =  { C }  /\  -.  { C }  C_  A ) )  <->  A  =  (/) ) )
5949, 58syl5bb 272 . . . . . . . 8  |-  ( C  e.  _V  ->  (
( ( A  =  (/)  \/  A  =  { C } )  /\  -.  { C }  C_  A
)  <->  A  =  (/) ) )
6048, 59bitrd 268 . . . . . . 7  |-  ( C  e.  _V  ->  (
( A  C_  { C }  /\  -.  { C }  C_  A )  <->  A  =  (/) ) )
6120bicomi 214 . . . . . . . 8  |-  ( ( B  C_  { C }  /\  { C }  C_  B )  <->  B  =  { C } )
6261a1i 11 . . . . . . 7  |-  ( C  e.  _V  ->  (
( B  C_  { C }  /\  { C }  C_  B )  <->  B  =  { C } ) )
6360, 62anbi12d 747 . . . . . 6  |-  ( C  e.  _V  ->  (
( ( A  C_  { C }  /\  -.  { C }  C_  A
)  /\  ( B  C_ 
{ C }  /\  { C }  C_  B
) )  <->  ( A  =  (/)  /\  B  =  { C } ) ) )
6445, 63syl5bb 272 . . . . 5  |-  ( C  e.  _V  ->  (
( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( -.  { C }  C_  A  /\  { C }  C_  B
) )  <->  ( A  =  (/)  /\  B  =  { C } ) ) )
6524, 44, 643orbi123d 1398 . . . 4  |-  ( C  e.  _V  ->  (
( ( ( A 
C_  { C }  /\  B  C_  { C } )  /\  ( { C }  C_  A  /\  { C }  C_  B ) )  \/  ( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( { C }  C_  A  /\  -.  { C }  C_  B
) )  \/  (
( A  C_  { C }  /\  B  C_  { C } )  /\  ( -.  { C }  C_  A  /\  { C }  C_  B ) ) )  <-> 
( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) ) )
6617, 65syl5bb 272 . . 3  |-  ( C  e.  _V  ->  (
( ( A  C_  { C }  /\  B  C_ 
{ C } )  /\  ( { C }  C_  A  \/  { C }  C_  B ) )  <->  ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) ) )
672, 13, 663bitrd 294 . 2  |-  ( C  e.  _V  ->  (
( A  u.  B
)  =  { C } 
<->  ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) ) )
68 snprc 4253 . . . . 5  |-  ( -.  C  e.  _V  <->  { C }  =  (/) )
6968biimpi 206 . . . 4  |-  ( -.  C  e.  _V  ->  { C }  =  (/) )
7069eqeq2d 2632 . . 3  |-  ( -.  C  e.  _V  ->  ( ( A  u.  B
)  =  { C } 
<->  ( A  u.  B
)  =  (/) ) )
7169eqeq2d 2632 . . . . . . . 8  |-  ( -.  C  e.  _V  ->  ( A  =  { C } 
<->  A  =  (/) ) )
7269eqeq2d 2632 . . . . . . . 8  |-  ( -.  C  e.  _V  ->  ( B  =  { C } 
<->  B  =  (/) ) )
7371, 72anbi12d 747 . . . . . . 7  |-  ( -.  C  e.  _V  ->  ( ( A  =  { C }  /\  B  =  { C } )  <-> 
( A  =  (/)  /\  B  =  (/) ) ) )
7471anbi1d 741 . . . . . . 7  |-  ( -.  C  e.  _V  ->  ( ( A  =  { C }  /\  B  =  (/) )  <->  ( A  =  (/)  /\  B  =  (/) ) ) )
7573, 74orbi12d 746 . . . . . 6  |-  ( -.  C  e.  _V  ->  ( ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) ) )  <->  ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  (/) ) ) ) )
7672anbi2d 740 . . . . . 6  |-  ( -.  C  e.  _V  ->  ( ( A  =  (/)  /\  B  =  { C } )  <->  ( A  =  (/)  /\  B  =  (/) ) ) )
7775, 76orbi12d 746 . . . . 5  |-  ( -.  C  e.  _V  ->  ( ( ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) ) )  \/  ( A  =  (/)  /\  B  =  { C } ) )  <->  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  (/) ) )  \/  ( A  =  (/)  /\  B  =  (/) ) ) ) )
78 pm4.25 537 . . . . . 6  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  (/) ) ) )
7978orbi1i 542 . . . . . 6  |-  ( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  (/) ) )  <-> 
( ( ( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  (/) ) )  \/  ( A  =  (/)  /\  B  =  (/) ) ) )
8078, 79bitri 264 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( (
( A  =  (/)  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  (/) ) )  \/  ( A  =  (/)  /\  B  =  (/) ) ) )
8177, 80syl6rbbr 279 . . . 4  |-  ( -.  C  e.  _V  ->  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( (
( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) ) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) ) )
82 un00 4011 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
8382bicomi 214 . . . 4  |-  ( ( A  u.  B )  =  (/)  <->  ( A  =  (/)  /\  B  =  (/) ) )
84 df-3or 1038 . . . 4  |-  ( ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) )  <->  ( (
( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) ) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) )
8581, 83, 843bitr4g 303 . . 3  |-  ( -.  C  e.  _V  ->  ( ( A  u.  B
)  =  (/)  <->  ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) ) )
8670, 85bitrd 268 . 2  |-  ( -.  C  e.  _V  ->  ( ( A  u.  B
)  =  { C } 
<->  ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) ) )
8767, 86pm2.61i 176 1  |-  ( ( A  u.  B )  =  { C }  <->  ( ( A  =  { C }  /\  B  =  { C } )  \/  ( A  =  { C }  /\  B  =  (/) )  \/  ( A  =  (/)  /\  B  =  { C } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  clsk1indlem3  38341
  Copyright terms: Public domain W3C validator