MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-inf2 Structured version   Visualization version   Unicode version

Axiom ax-inf2 8538
Description: A standard version of Axiom of Infinity of ZF set theory. In English, it says: there exists a set that contains the empty set and the successors of all of its members. Theorem zfinf2 8539 shows it converted to abbreviations. This axiom was derived as theorem axinf2 8537 above, using our version of Infinity ax-inf 8535 and the Axiom of Regularity ax-reg 8497. We will reference ax-inf2 8538 instead of axinf2 8537 so that the ordinary uses of Regularity can be more easily identified. The reverse derivation of ax-inf 8535 from ax-inf2 8538 is shown by theorem axinf 8541. (Contributed by NM, 3-Nov-1996.)
Assertion
Ref Expression
ax-inf2  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Distinct variable group:    x, y, z, w

Detailed syntax breakdown of Axiom ax-inf2
StepHypRef Expression
1 vy . . . . . 6  setvar  y
2 vx . . . . . 6  setvar  x
31, 2wel 1991 . . . . 5  wff  y  e.  x
4 vz . . . . . . . 8  setvar  z
54, 1wel 1991 . . . . . . 7  wff  z  e.  y
65wn 3 . . . . . 6  wff  -.  z  e.  y
76, 4wal 1481 . . . . 5  wff  A. z  -.  z  e.  y
83, 7wa 384 . . . 4  wff  ( y  e.  x  /\  A. z  -.  z  e.  y )
98, 1wex 1704 . . 3  wff  E. y
( y  e.  x  /\  A. z  -.  z  e.  y )
104, 2wel 1991 . . . . . . 7  wff  z  e.  x
11 vw . . . . . . . . . 10  setvar  w
1211, 4wel 1991 . . . . . . . . 9  wff  w  e.  z
1311, 1wel 1991 . . . . . . . . . 10  wff  w  e.  y
1411, 1weq 1874 . . . . . . . . . 10  wff  w  =  y
1513, 14wo 383 . . . . . . . . 9  wff  ( w  e.  y  \/  w  =  y )
1612, 15wb 196 . . . . . . . 8  wff  ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) )
1716, 11wal 1481 . . . . . . 7  wff  A. w
( w  e.  z  <-> 
( w  e.  y  \/  w  =  y ) )
1810, 17wa 384 . . . . . 6  wff  ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) )
1918, 4wex 1704 . . . . 5  wff  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) )
203, 19wi 4 . . . 4  wff  ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
2120, 1wal 1481 . . 3  wff  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
229, 21wa 384 . 2  wff  ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2322, 2wex 1704 1  wff  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
Colors of variables: wff setvar class
This axiom is referenced by:  zfinf2  8539
  Copyright terms: Public domain W3C validator