![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-inf2 | Structured version Visualization version Unicode version |
Description: A standard version of Axiom of Infinity of ZF set theory. In English, it says: there exists a set that contains the empty set and the successors of all of its members. Theorem zfinf2 8539 shows it converted to abbreviations. This axiom was derived as theorem axinf2 8537 above, using our version of Infinity ax-inf 8535 and the Axiom of Regularity ax-reg 8497. We will reference ax-inf2 8538 instead of axinf2 8537 so that the ordinary uses of Regularity can be more easily identified. The reverse derivation of ax-inf 8535 from ax-inf2 8538 is shown by theorem axinf 8541. (Contributed by NM, 3-Nov-1996.) |
Ref | Expression |
---|---|
ax-inf2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vy |
. . . . . 6
![]() ![]() | |
2 | vx |
. . . . . 6
![]() ![]() | |
3 | 1, 2 | wel 1991 |
. . . . 5
![]() ![]() ![]() ![]() |
4 | vz |
. . . . . . . 8
![]() ![]() | |
5 | 4, 1 | wel 1991 |
. . . . . . 7
![]() ![]() ![]() ![]() |
6 | 5 | wn 3 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
7 | 6, 4 | wal 1481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | wa 384 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8, 1 | wex 1704 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 4, 2 | wel 1991 |
. . . . . . 7
![]() ![]() ![]() ![]() |
11 | vw |
. . . . . . . . . 10
![]() ![]() | |
12 | 11, 4 | wel 1991 |
. . . . . . . . 9
![]() ![]() ![]() ![]() |
13 | 11, 1 | wel 1991 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() |
14 | 11, 1 | weq 1874 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() |
15 | 13, 14 | wo 383 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 12, 15 | wb 196 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16, 11 | wal 1481 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 10, 17 | wa 384 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18, 4 | wex 1704 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 3, 19 | wi 4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20, 1 | wal 1481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 9, 21 | wa 384 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22, 2 | wex 1704 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: zfinf2 8539 |
Copyright terms: Public domain | W3C validator |