| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfinf2 | Structured version Visualization version Unicode version | ||
| Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (See ax-inf2 8538 for the unabbreviated version.) (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| zfinf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf2 8538 |
. 2
| |
| 2 | 0el 3939 |
. . . . 5
| |
| 3 | df-rex 2918 |
. . . . 5
| |
| 4 | 2, 3 | bitri 264 |
. . . 4
|
| 5 | sucel 5798 |
. . . . . . 7
| |
| 6 | df-rex 2918 |
. . . . . . 7
| |
| 7 | 5, 6 | bitri 264 |
. . . . . 6
|
| 8 | 7 | ralbii 2980 |
. . . . 5
|
| 9 | df-ral 2917 |
. . . . 5
| |
| 10 | 8, 9 | bitri 264 |
. . . 4
|
| 11 | 4, 10 | anbi12i 733 |
. . 3
|
| 12 | 11 | exbii 1774 |
. 2
|
| 13 | 1, 12 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-suc 5729 |
| This theorem is referenced by: omex 8540 |
| Copyright terms: Public domain | W3C validator |