MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-un Structured version   Visualization version   Unicode version

Axiom ax-un 6949
Description: Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states that a set  y exists that includes the union of a given set  x i.e. the collection of all members of the members of  x. The variant axun2 6951 states that the union itself exists. A version with the standard abbreviation for union is uniex2 6952. A version using class notation is uniex 6953.

The union of a class df-uni 4437 should not be confused with the union of two classes df-un 3579. Their relationship is shown in unipr 4449. (Contributed by NM, 23-Dec-1993.)

Assertion
Ref Expression
ax-un  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Distinct variable group:    x, w, y, z

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7  setvar  z
2 vw . . . . . . 7  setvar  w
31, 2wel 1991 . . . . . 6  wff  z  e.  w
4 vx . . . . . . 7  setvar  x
52, 4wel 1991 . . . . . 6  wff  w  e.  x
63, 5wa 384 . . . . 5  wff  ( z  e.  w  /\  w  e.  x )
76, 2wex 1704 . . . 4  wff  E. w
( z  e.  w  /\  w  e.  x
)
8 vy . . . . 5  setvar  y
91, 8wel 1991 . . . 4  wff  z  e.  y
107, 9wi 4 . . 3  wff  ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1110, 1wal 1481 . 2  wff  A. z
( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
1211, 8wex 1704 1  wff  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
Colors of variables: wff setvar class
This axiom is referenced by:  zfun  6950  axun2  6951
  Copyright terms: Public domain W3C validator