| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unipr | Structured version Visualization version Unicode version | ||
| Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| unipr.1 |
|
| unipr.2 |
|
| Ref | Expression |
|---|---|
| unipr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1810 |
. . . 4
| |
| 2 | vex 3203 |
. . . . . . . 8
| |
| 3 | 2 | elpr 4198 |
. . . . . . 7
|
| 4 | 3 | anbi2i 730 |
. . . . . 6
|
| 5 | andi 911 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 264 |
. . . . 5
|
| 7 | 6 | exbii 1774 |
. . . 4
|
| 8 | unipr.1 |
. . . . . . 7
| |
| 9 | 8 | clel3 3341 |
. . . . . 6
|
| 10 | exancom 1787 |
. . . . . 6
| |
| 11 | 9, 10 | bitri 264 |
. . . . 5
|
| 12 | unipr.2 |
. . . . . . 7
| |
| 13 | 12 | clel3 3341 |
. . . . . 6
|
| 14 | exancom 1787 |
. . . . . 6
| |
| 15 | 13, 14 | bitri 264 |
. . . . 5
|
| 16 | 11, 15 | orbi12i 543 |
. . . 4
|
| 17 | 1, 7, 16 | 3bitr4ri 293 |
. . 3
|
| 18 | 17 | abbii 2739 |
. 2
|
| 19 | df-un 3579 |
. 2
| |
| 20 | df-uni 4437 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4ri 2655 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 |
| This theorem is referenced by: uniprg 4450 unisn 4451 uniintsn 4514 uniop 4977 unex 6956 rankxplim 8742 mrcun 16282 indistps 20815 indistps2 20816 leordtval2 21016 ex-uni 27283 fouriersw 40448 |
| Copyright terms: Public domain | W3C validator |