| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sorpsscmpl | Structured version Visualization version Unicode version | ||
| Description: The componentwise complement of a chain of sets is also a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| sorpsscmpl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 3722 |
. . . . . . 7
| |
| 2 | 1 | eleq1d 2686 |
. . . . . 6
|
| 3 | 2 | elrab 3363 |
. . . . 5
|
| 4 | difeq2 3722 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2686 |
. . . . . 6
|
| 6 | 5 | elrab 3363 |
. . . . 5
|
| 7 | an4 865 |
. . . . . 6
| |
| 8 | 7 | biimpi 206 |
. . . . 5
|
| 9 | 3, 6, 8 | syl2anb 496 |
. . . 4
|
| 10 | sorpssi 6943 |
. . . . . . . 8
| |
| 11 | 10 | expcom 451 |
. . . . . . 7
|
| 12 | selpw 4165 |
. . . . . . . . . . 11
| |
| 13 | dfss4 3858 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | bitri 264 |
. . . . . . . . . 10
|
| 15 | selpw 4165 |
. . . . . . . . . . 11
| |
| 16 | dfss4 3858 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | bitri 264 |
. . . . . . . . . 10
|
| 18 | sscon 3744 |
. . . . . . . . . . . 12
| |
| 19 | sseq12 3628 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | syl5ib 234 |
. . . . . . . . . . 11
|
| 21 | sscon 3744 |
. . . . . . . . . . . 12
| |
| 22 | sseq12 3628 |
. . . . . . . . . . . . 13
| |
| 23 | 22 | ancoms 469 |
. . . . . . . . . . . 12
|
| 24 | 21, 23 | syl5ib 234 |
. . . . . . . . . . 11
|
| 25 | 20, 24 | orim12d 883 |
. . . . . . . . . 10
|
| 26 | 14, 17, 25 | syl2anb 496 |
. . . . . . . . 9
|
| 27 | 26 | com12 32 |
. . . . . . . 8
|
| 28 | 27 | orcoms 404 |
. . . . . . 7
|
| 29 | 11, 28 | syl6 35 |
. . . . . 6
|
| 30 | 29 | com3l 89 |
. . . . 5
|
| 31 | 30 | impd 447 |
. . . 4
|
| 32 | 9, 31 | syl5 34 |
. . 3
|
| 33 | 32 | ralrimivv 2970 |
. 2
|
| 34 | sorpss 6942 |
. 2
| |
| 35 | 33, 34 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-rpss 6937 |
| This theorem is referenced by: fin2i2 9140 isfin2-2 9141 |
| Copyright terms: Public domain | W3C validator |