MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12dgen Structured version   Visualization version   Unicode version

Theorem ax12dgen 2011
Description: Degenerate instance of ax-12 2047 where bundled variables  x and  y have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.)
Assertion
Ref Expression
ax12dgen  |-  ( x  =  x  ->  ( A. x ph  ->  A. x
( x  =  x  ->  ph ) ) )

Proof of Theorem ax12dgen
StepHypRef Expression
1 ala1 1741 . 2  |-  ( A. x ph  ->  A. x
( x  =  x  ->  ph ) )
21a1i 11 1  |-  ( x  =  x  ->  ( A. x ph  ->  A. x
( x  =  x  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-gen 1722  ax-4 1737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator