Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12inda2ALT Structured version   Visualization version   Unicode version

Theorem ax12inda2ALT 34231
Description: Alternate proof of ax12inda2 34232, slightly more direct and not requiring ax-c16 34177. (Contributed by NM, 4-May-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax12inda2.1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Assertion
Ref Expression
ax12inda2ALT  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem ax12inda2ALT
StepHypRef Expression
1 ax-1 6 . . . . . . . 8  |-  ( A. x ph  ->  ( x  =  y  ->  A. x ph ) )
21axc4i-o 34183 . . . . . . 7  |-  ( A. x ph  ->  A. x
( x  =  y  ->  A. x ph )
)
32a1i 11 . . . . . 6  |-  ( A. z  z  =  x  ->  ( A. x ph  ->  A. x ( x  =  y  ->  A. x ph ) ) )
4 biidd 252 . . . . . . 7  |-  ( A. z  z  =  x  ->  ( ph  <->  ph ) )
54dral1-o 34189 . . . . . 6  |-  ( A. z  z  =  x  ->  ( A. z ph  <->  A. x ph ) )
65imbi2d 330 . . . . . . 7  |-  ( A. z  z  =  x  ->  ( ( x  =  y  ->  A. z ph )  <->  ( x  =  y  ->  A. x ph ) ) )
76dral2-o 34215 . . . . . 6  |-  ( A. z  z  =  x  ->  ( A. x ( x  =  y  ->  A. z ph )  <->  A. x
( x  =  y  ->  A. x ph )
) )
83, 5, 73imtr4d 283 . . . . 5  |-  ( A. z  z  =  x  ->  ( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) )
98aecoms-o 34187 . . . 4  |-  ( A. x  x  =  z  ->  ( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) )
109a1d 25 . . 3  |-  ( A. x  x  =  z  ->  ( x  =  y  ->  ( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) ) )
1110a1d 25 . 2  |-  ( A. x  x  =  z  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) ) ) )
12 simplr 792 . . . . 5  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  y )  /\  x  =  y )  ->  -.  A. x  x  =  y )
13 dveeq1-o 34220 . . . . . . . 8  |-  ( -. 
A. z  z  =  x  ->  ( x  =  y  ->  A. z  x  =  y )
)
1413naecoms-o 34212 . . . . . . 7  |-  ( -. 
A. x  x  =  z  ->  ( x  =  y  ->  A. z  x  =  y )
)
1514imp 445 . . . . . 6  |-  ( ( -.  A. x  x  =  z  /\  x  =  y )  ->  A. z  x  =  y )
1615adantlr 751 . . . . 5  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  y )  /\  x  =  y )  ->  A. z  x  =  y )
17 hbnae-o 34213 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
18 hba1-o 34182 . . . . . . 7  |-  ( A. z  x  =  y  ->  A. z A. z  x  =  y )
1917, 18hban 2128 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  A. z  x  =  y
)  ->  A. z
( -.  A. x  x  =  y  /\  A. z  x  =  y ) )
20 ax-c5 34168 . . . . . . 7  |-  ( A. z  x  =  y  ->  x  =  y )
21 ax12inda2.1 . . . . . . . 8  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
2221imp 445 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  x  =  y )  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) )
2320, 22sylan2 491 . . . . . 6  |-  ( ( -.  A. x  x  =  y  /\  A. z  x  =  y
)  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
2419, 23alimdh 1745 . . . . 5  |-  ( ( -.  A. x  x  =  y  /\  A. z  x  =  y
)  ->  ( A. z ph  ->  A. z A. x ( x  =  y  ->  ph ) ) )
2512, 16, 24syl2anc 693 . . . 4  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  y )  /\  x  =  y )  -> 
( A. z ph  ->  A. z A. x
( x  =  y  ->  ph ) ) )
26 ax-11 2034 . . . . . 6  |-  ( A. z A. x ( x  =  y  ->  ph )  ->  A. x A. z
( x  =  y  ->  ph ) )
27 hbnae-o 34213 . . . . . . 7  |-  ( -. 
A. x  x  =  z  ->  A. x  -.  A. x  x  =  z )
28 hbnae-o 34213 . . . . . . . . 9  |-  ( -. 
A. x  x  =  z  ->  A. z  -.  A. x  x  =  z )
2928, 14nf5dh 2026 . . . . . . . 8  |-  ( -. 
A. x  x  =  z  ->  F/ z  x  =  y )
30 19.21t 2073 . . . . . . . 8  |-  ( F/ z  x  =  y  ->  ( A. z
( x  =  y  ->  ph )  <->  ( x  =  y  ->  A. z ph ) ) )
3129, 30syl 17 . . . . . . 7  |-  ( -. 
A. x  x  =  z  ->  ( A. z ( x  =  y  ->  ph )  <->  ( x  =  y  ->  A. z ph ) ) )
3227, 31albidh 1793 . . . . . 6  |-  ( -. 
A. x  x  =  z  ->  ( A. x A. z ( x  =  y  ->  ph )  <->  A. x ( x  =  y  ->  A. z ph ) ) )
3326, 32syl5ib 234 . . . . 5  |-  ( -. 
A. x  x  =  z  ->  ( A. z A. x ( x  =  y  ->  ph )  ->  A. x ( x  =  y  ->  A. z ph ) ) )
3433ad2antrr 762 . . . 4  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  y )  /\  x  =  y )  -> 
( A. z A. x ( x  =  y  ->  ph )  ->  A. x ( x  =  y  ->  A. z ph ) ) )
3525, 34syld 47 . . 3  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  y )  /\  x  =  y )  -> 
( A. z ph  ->  A. x ( x  =  y  ->  A. z ph ) ) )
3635exp31 630 . 2  |-  ( -. 
A. x  x  =  z  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) ) )
3711, 36pm2.61i 176 1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( A. z ph  ->  A. x
( x  =  y  ->  A. z ph )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-c5 34168  ax-c4 34169  ax-c7 34170  ax-c10 34171  ax-c11 34172  ax-c9 34175
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator