| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12inda2 | Structured version Visualization version Unicode version | ||
| Description: Induction step for
constructing a substitution instance of ax-c15 34174
without using ax-c15 34174. Quantification case. When |
| Ref | Expression |
|---|---|
| ax12inda2.1 |
|
| Ref | Expression |
|---|---|
| ax12inda2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 |
. . . . 5
| |
| 2 | axc16g-o 34219 |
. . . . 5
| |
| 3 | 1, 2 | syl5 34 |
. . . 4
|
| 4 | 3 | a1d 25 |
. . 3
|
| 5 | 4 | a1d 25 |
. 2
|
| 6 | ax12inda2.1 |
. . 3
| |
| 7 | 6 | ax12indalem 34230 |
. 2
|
| 8 | 5, 7 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-c5 34168 ax-c4 34169 ax-c7 34170 ax-c10 34171 ax-c11 34172 ax-c9 34175 ax-c16 34177 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: ax12inda 34233 |
| Copyright terms: Public domain | W3C validator |