| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax12v2 | Structured version Visualization version Unicode version | ||
| Description: It is possible to remove
any restriction on |
| Ref | Expression |
|---|---|
| ax12v2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1949 |
. . 3
| |
| 2 | ax12v 2048 |
. . . 4
| |
| 3 | 1 | imim1d 82 |
. . . . 5
|
| 4 | 3 | alimdv 1845 |
. . . 4
|
| 5 | 2, 4 | syl9r 78 |
. . 3
|
| 6 | 1, 5 | syld 47 |
. 2
|
| 7 | ax6evr 1942 |
. 2
| |
| 8 | 6, 7 | exlimiiv 1859 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: axc11rvOLD 2140 sb56 2150 bj-ax12 32634 wl-lem-exsb 33348 wl-lem-moexsb 33350 |
| Copyright terms: Public domain | W3C validator |