MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12v2 Structured version   Visualization version   Unicode version

Theorem ax12v2 2049
Description: It is possible to remove any restriction on  ph in ax12v 2048. Same as Axiom C8 of [Monk2] p. 105. Use ax12v 2048 instead when sufficient. (Contributed by NM, 5-Aug-1993.) Removed dependencies on ax-10 2019 and ax-13 2246. (Revised by Jim Kingdon, 15-Dec-2017.) (Proof shortened by Wolf Lammen, 8-Dec-2019.)
Assertion
Ref Expression
ax12v2  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem ax12v2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 equtrr 1949 . . 3  |-  ( y  =  z  ->  (
x  =  y  ->  x  =  z )
)
2 ax12v 2048 . . . 4  |-  ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )
31imim1d 82 . . . . 5  |-  ( y  =  z  ->  (
( x  =  z  ->  ph )  ->  (
x  =  y  ->  ph ) ) )
43alimdv 1845 . . . 4  |-  ( y  =  z  ->  ( A. x ( x  =  z  ->  ph )  ->  A. x ( x  =  y  ->  ph ) ) )
52, 4syl9r 78 . . 3  |-  ( y  =  z  ->  (
x  =  z  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
61, 5syld 47 . 2  |-  ( y  =  z  ->  (
x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
7 ax6evr 1942 . 2  |-  E. z 
y  =  z
86, 7exlimiiv 1859 1  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  axc11rvOLD  2140  sb56  2150  bj-ax12  32634  wl-lem-exsb  33348  wl-lem-moexsb  33350
  Copyright terms: Public domain W3C validator