| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6evr | Structured version Visualization version Unicode version | ||
| Description: A commuted form of ax6ev 1890. (Contributed by BJ, 7-Dec-2020.) |
| Ref | Expression |
|---|---|
| ax6evr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1890 |
. 2
| |
| 2 | equcomiv 1941 |
. 2
| |
| 3 | 1, 2 | eximii 1764 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: ax7 1943 equviniva 1960 ax12v2 2049 ax12vOLD 2050 19.8a 2052 axc11n 2307 euequ1 2476 relopabi 5245 relop 5272 bj-ax6e 32653 axc11n11r 32673 wl-spae 33306 |
| Copyright terms: Public domain | W3C validator |