| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-lem-moexsb | Structured version Visualization version Unicode version | ||
| Description: The antecedent
This theorem provides a basic working step in proving theorems about
|
| Ref | Expression |
|---|---|
| wl-lem-moexsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2028 |
. . 3
| |
| 2 | nfs1v 2437 |
. . 3
| |
| 3 | sp 2053 |
. . . . 5
| |
| 4 | ax12v2 2049 |
. . . . 5
| |
| 5 | 3, 4 | syli 39 |
. . . 4
|
| 6 | sb2 2352 |
. . . 4
| |
| 7 | 5, 6 | syl6 35 |
. . 3
|
| 8 | 1, 2, 7 | exlimd 2087 |
. 2
|
| 9 | spsbe 1884 |
. 2
| |
| 10 | 8, 9 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |